Spaces:
Running
on
Zero
Running
on
Zero
from marker.convert import convert_single_pdf | |
from marker.models import load_all_models | |
import tempfile | |
from indexify_extractor_sdk import Content, Extractor, Feature | |
from pydantic import BaseModel | |
from typing import Optional, Literal, List, Union | |
class MarkdownExtractorConfig(BaseModel): | |
max_pages: Optional[int] = None | |
langs: Optional[str] = None | |
batch_multiplier: Optional[int] = 2 | |
class MarkdownExtractor(Extractor): | |
name = "tensorlake/marker" | |
description = "Markdown Extractor for PDFs" | |
system_dependencies = [] | |
input_mime_types = ["application/pdf"] | |
def __init__(self): | |
super(MarkdownExtractor, self).__init__() | |
self.model_lst = load_all_models() | |
def extract(self, content: Content, params: MarkdownExtractorConfig) -> List[Union[Feature, Content]]: | |
contents = [] | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as inputtmpfile: | |
inputtmpfile.write(content.data) | |
inputtmpfile.flush() | |
full_text, images, out_meta = convert_single_pdf(inputtmpfile.name, self.model_lst, max_pages=params.max_pages, langs=params.langs, batch_multiplier=params.batch_multiplier) | |
feature = Feature.metadata(value=out_meta, name="text") | |
contents.append(Content.from_text(full_text, features=[feature])) | |
return contents | |
def sample_input(self) -> Content: | |
return self.sample_scientific_pdf() |