Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
from marker.markdown_extractor import MarkdownExtractorConfig, MarkdownExtractor | |
from pdf.pdf_extractor import PDFExtractorConfig, PDFExtractor | |
from gemini.gemini_extractor import GeminiExtractorConfig, GeminiExtractor | |
from oai.oai_extractor import OAIExtractorConfig, OAIExtractor | |
from indexify_extractor_sdk import Content | |
markdown_extractor = MarkdownExtractor() | |
pdf_extractor = PDFExtractor() | |
gemini_extractor = GeminiExtractor() | |
oai_extractor = OAIExtractor() | |
def use_marker(pdf_filepath): | |
if pdf_filepath is None: | |
raise gr.Error("Please provide some input PDF: upload an PDF file") | |
with open(pdf_filepath, "rb") as f: | |
pdf_data = f.read() | |
content = Content(content_type="application/pdf", data=pdf_data) | |
config = MarkdownExtractorConfig(batch_multiplier=2) | |
result = markdown_extractor.extract(content, config) | |
return result | |
def use_pdf_extractor(pdf_filepath): | |
if pdf_filepath is None: | |
raise gr.Error("Please provide some input PDF: upload an PDF file") | |
with open(pdf_filepath, "rb") as f: | |
pdf_data = f.read() | |
content = Content(content_type="application/pdf", data=pdf_data) | |
config = PDFExtractorConfig(output_types=["text", "table"]) | |
result = pdf_extractor.extract(content, config) | |
return result | |
def use_gemini(pdf_filepath, key): | |
if pdf_filepath is None: | |
raise gr.Error("Please provide some input PDF: upload an PDF file") | |
with open(pdf_filepath, "rb") as f: | |
pdf_data = f.read() | |
content = Content(content_type="application/pdf", data=pdf_data) | |
config = GeminiExtractorConfig(prompt="Extract all text from the document.", model_name="gemini-1.5-flash", key=key) | |
result = gemini_extractor.extract(content, config) | |
return result | |
def use_openai(pdf_filepath, key): | |
if pdf_filepath is None: | |
raise gr.Error("Please provide some input PDF: upload an PDF file") | |
with open(pdf_filepath, "rb") as f: | |
pdf_data = f.read() | |
content = Content(content_type="application/pdf", data=pdf_data) | |
config = OAIExtractorConfig(prompt="Extract all text from the document.", model_name="gpt-4o", key=key) | |
result = oai_extractor.extract(content, config) | |
return result | |
with gr.Blocks(title="PDF data extraction with Marker & Indexify") as marker_demo: | |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Marker & <a href='https://getindexify.ai/'>Indexify</a></h1>") | |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>") | |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>") | |
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/efficient_rag.ipynb' target='_blank'>extraction pipleine</a> with Indexify</h4>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>" | |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. " | |
"You can extract from PDF files continuously and try various other extractors locally with " | |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>" | |
) | |
pdf_file = gr.File(type="filepath") | |
with gr.Column(): | |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>") | |
go_button = gr.Button( | |
value="Run extractor", | |
variant="primary", | |
) | |
model_output_text_box = gr.Textbox( | |
label="Extractor Output", | |
elem_id="model_output_text_box", | |
) | |
with gr.Row(): | |
gr.HTML( | |
"<p style='text-align: center'>" | |
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | " | |
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product" | |
"</p>" | |
) | |
go_button.click( | |
fn=use_marker, | |
inputs = [pdf_file], | |
outputs = [model_output_text_box] | |
) | |
with gr.Blocks(title="PDF data extraction with PDF Extractor & Indexify") as pdf_demo: | |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with PDF Extractor & <a href='https://getindexify.ai/'>Indexify</a></h1>") | |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>") | |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>") | |
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/SEC_10_K_docs.ipynb' target='_blank'>extraction pipleine</a> with Indexify</h4>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>" | |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. " | |
"You can extract from PDF files continuously and try various other extractors locally with " | |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>" | |
) | |
pdf_file = gr.File(type="filepath") | |
with gr.Column(): | |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>") | |
go_button = gr.Button( | |
value="Run extractor", | |
variant="primary", | |
) | |
model_output_text_box = gr.Textbox( | |
label="Extractor Output", | |
elem_id="model_output_text_box", | |
) | |
with gr.Row(): | |
gr.HTML( | |
"<p style='text-align: center'>" | |
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | " | |
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product" | |
"</p>" | |
) | |
go_button.click( | |
fn=use_pdf_extractor, | |
inputs = [pdf_file], | |
outputs = [model_output_text_box] | |
) | |
with gr.Blocks(title="PDF data extraction with Gemini & Indexify") as gemini_demo: | |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Gemini & <a href='https://getindexify.ai/'>Indexify</a></h1>") | |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>") | |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>") | |
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_gemini.ipynb' target='_blank'>extraction pipleine</a> with Indexify</h4>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>" | |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. " | |
"You can extract from PDF files continuously and try various other extractors locally with " | |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>" | |
) | |
pdf_file = gr.File(type="filepath") | |
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>") | |
key = gr.Textbox( | |
info="Please enter your GEMINI_API_KEY", | |
label="Key:" | |
) | |
with gr.Column(): | |
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>") | |
go_button = gr.Button( | |
value="Run extractor", | |
variant="primary", | |
) | |
model_output_text_box = gr.Textbox( | |
label="Extractor Output", | |
elem_id="model_output_text_box", | |
) | |
with gr.Row(): | |
gr.HTML( | |
"<p style='text-align: center'>" | |
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | " | |
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product" | |
"</p>" | |
) | |
go_button.click( | |
fn=use_gemini, | |
inputs = [pdf_file, key], | |
outputs = [model_output_text_box] | |
) | |
with gr.Blocks(title="PDF data extraction with OpenAI & Indexify") as openai_demo: | |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with OpenAI & <a href='https://getindexify.ai/'>Indexify</a></h1>") | |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>") | |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>") | |
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_openai.ipynb' target='_blank'>extraction pipleine</a> with Indexify</h4>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>" | |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. " | |
"You can extract from PDF files continuously and try various other extractors locally with " | |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>" | |
) | |
pdf_file = gr.File(type="filepath") | |
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>") | |
key = gr.Textbox( | |
info="Please enter your OPENAI_API_KEY", | |
label="Key:" | |
) | |
with gr.Column(): | |
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>") | |
go_button = gr.Button( | |
value="Run extractor", | |
variant="primary", | |
) | |
model_output_text_box = gr.Textbox( | |
label="Extractor Output", | |
elem_id="model_output_text_box", | |
) | |
with gr.Row(): | |
gr.HTML( | |
"<p style='text-align: center'>" | |
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | " | |
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product" | |
"</p>" | |
) | |
go_button.click( | |
fn=use_openai, | |
inputs = [pdf_file, key], | |
outputs = [model_output_text_box] | |
) | |
demo = gr.TabbedInterface([marker_demo, pdf_demo, gemini_demo, openai_demo], ["Marker Extractor", "PDF Extractor", "Gemini Extractor", "OpenAI Extractor"], theme=gr.themes.Soft()) | |
demo.queue() | |
demo.launch() |