File size: 8,166 Bytes
ce6a2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
[

            {   "name":"sentence-transformers/all-MiniLM-L6-v2", 
                "model":"sentence-transformers/all-MiniLM-L6-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 3.8  million downloads from huggingface",
                                 "sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/paraphrase-MiniLM-L6-v2", 
                "model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 2 million downloads from huggingface",
                                 "sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/bert-base-nli-mean-tokens", 
                "model":"sentence-transformers/bert-base-nli-mean-tokens",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 700,000 downloads from huggingface",
                                 "sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/all-mpnet-base-v2", 
                "model":"sentence-transformers/all-mpnet-base-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 500,000 downloads from huggingface",
                                 "sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/all-MiniLM-L12-v2",
                "model":"sentence-transformers/all-MiniLM-L12-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 500,000 downloads from huggingface",
                                 "sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},

            {   "name":"SGPT-125M", 
                "model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
                "fork_url":"https://github.com/taskswithcode/sgpt",
                "orig_author_url":"https://github.com/Muennighoff",
                "orig_author":"Niklas Muennighoff",
                "sota_info": {   
                                 "task":"#1 in multiple information retrieval & search tasks(smaller variant)",
                                 "sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
                            },
                "paper_url":"https://arxiv.org/abs/2202.08904v5",
                "mark":"True",
                "class":"SGPTModel"},
            {   "name":"SGPT-1.3B",
                "model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
                "fork_url":"https://github.com/taskswithcode/sgpt",
                "orig_author_url":"https://github.com/Muennighoff",
                "orig_author":"Niklas Muennighoff",
                "sota_info": {   
                                 "task":"#1 in multiple information retrieval & search tasks(smaller variant)",
                                 "sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
                            },
                "paper_url":"https://arxiv.org/abs/2202.08904v5",
                "Note":"If this large model takes too long or fails to load , try this ",
                "alt_url":"http://www.taskswithcode.com/sentence_similarity/",
                "mark":"True",
                "class":"SGPTModel"},
            {   "name":"SGPT-5.8B",
                "model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
                "fork_url":"https://github.com/taskswithcode/sgpt",
                "orig_author_url":"https://github.com/Muennighoff",
                "orig_author":"Niklas Muennighoff",
                "Note":"If this large model takes too long or fails to load , try this ",
                "alt_url":"http://www.taskswithcode.com/sentence_similarity/",
                "sota_info": {   
                                 "task":"#1 in multiple information retrieval & search tasks",
                                 "sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
                            },
                "paper_url":"https://arxiv.org/abs/2202.08904v5",
                "mark":"True",
                "class":"SGPTModel"},

            {   "name":"SIMCSE-large" ,
                "model":"princeton-nlp/sup-simcse-roberta-large",
                "fork_url":"https://github.com/taskswithcode/SimCSE",
                "orig_author_url":"https://github.com/princeton-nlp",
                "orig_author":"Princeton Natural Language Processing",
                "Note":"If this large model takes too long or fails to load , try this ",
                "alt_url":"http://www.taskswithcode.com/sentence_similarity/",
                "sota_info": {   
                                 "task":"Within top 10 in multiple semantic textual similarity tasks",
                                 "sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
                            },
                "paper_url":"https://arxiv.org/abs/2104.08821v4",
                "mark":"True",
                "class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},

            {  "name":"SIMCSE-base" ,
                "model":"princeton-nlp/sup-simcse-roberta-base",
                "fork_url":"https://github.com/taskswithcode/SimCSE",
                "orig_author_url":"https://github.com/princeton-nlp",
                "orig_author":"Princeton Natural Language Processing",
                "sota_info": {   
                                 "task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
                                 "sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
                            },
                "paper_url":"https://arxiv.org/abs/2104.08821v4",
                "mark":"True",
                "class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"}


            ]