multimodalart's picture
Update app.py
accd1bc verified
raw
history blame
4.06 kB
import gradio as gr
from diffusers import StableDiffusionXLPipeline
import numpy as np
import math
import spaces
import torch
import random
from gradio_imageslider import ImageSlider
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
)
device="cuda"
pipe = pipe.to(device)
@spaces.GPU
def run(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, lora=None, progress=gr.Progress(track_tqdm=True)):
prompt = prompt.strip()
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
print(f"Initial seed for prompt `{prompt}`", seed)
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
if not prompt and not negative_prompt:
guidance_scale = 0.0
pipe.unfuse_lora()
pipe.unload_lora_weights()
if lora:
pipe.load_lora_weights(lora)
pipe.fuse_lora(lora_scale=0.9)
print(f"Seed before sending to generator for prompt: `{prompt}`", seed)
generator = torch.Generator(device="cuda").manual_seed(seed)
image_pag = pipe(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
generator = torch.Generator(device="cuda").manual_seed(seed)
image_normal = pipe(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=25).images[0]
print(f"Seed at the end of generation for prompt: `{prompt}`", seed)
return (image_pag, image_normal), seed
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
with gr.Blocks(css=css, theme=theme) as demo:
gr.Markdown('''# Perturbed-Attention Guidance SDXL
SDXL 🧨 [diffusers implementation](https://huggingface.co/multimodalart/sdxl_perturbed_attention_guidance) of [Perturbed-Attenton Guidance](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/)
''')
with gr.Group():
with gr.Row():
prompt = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt", info="Leave blank to test unconditional generation")
button = gr.Button("Generate", min_width=120)
output = ImageSlider(label="Left: PAG, Right: No PAG", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=7.0)
negative_prompt = gr.Textbox(label="Negative prompt", info="Is only applied for the CFG part, leave blank for unconditional generation")
pag_scale = gr.Number(label="Pag Scale", value=3.0)
pag_layers = gr.Dropdown(label="Model layers to apply Pag to", info="mid is the one used on the paper, up and down blocks seem unstable", choices=["up", "mid", "down"], multiselect=True, value="mid")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
seed = gr.Slider(minimum=1, maximum=9007199254740991, step=1, randomize=True)
lora = gr.Textbox(label="Custom LoRA path", info="Load a custom LoRA from Hugging Face to use PAG with")
gr.Examples(fn=run, examples=[" ", "an insect robot preparing a delicious meal, anime style", "a photo of a group of friends at an amusement park"], inputs=prompt, outputs=[output, seed], cache_examples="lazy")
gr.on(
triggers=[
button.click,
prompt.submit
],
fn=run,
inputs=[prompt, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed, lora],
outputs=[output, seed],
)
if __name__ == "__main__":
demo.launch(share=True)