import torch import yaml from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.data.paired_image_dataset import PairedImageDataset from basicsr.losses.losses import GANLoss, L1Loss, PerceptualLoss from realesrgan.archs.discriminator_arch import UNetDiscriminatorSN from realesrgan.models.realesrgan_model import RealESRGANModel from realesrgan.models.realesrnet_model import RealESRNetModel def test_realesrnet_model(): with open('tests/data/test_realesrnet_model.yml', mode='r') as f: opt = yaml.load(f, Loader=yaml.FullLoader) # build model model = RealESRNetModel(opt) # test attributes assert model.__class__.__name__ == 'RealESRNetModel' assert isinstance(model.net_g, RRDBNet) assert isinstance(model.cri_pix, L1Loss) assert isinstance(model.optimizers[0], torch.optim.Adam) # prepare data gt = torch.rand((1, 3, 32, 32), dtype=torch.float32) kernel1 = torch.rand((1, 5, 5), dtype=torch.float32) kernel2 = torch.rand((1, 5, 5), dtype=torch.float32) sinc_kernel = torch.rand((1, 5, 5), dtype=torch.float32) data = dict(gt=gt, kernel1=kernel1, kernel2=kernel2, sinc_kernel=sinc_kernel) model.feed_data(data) # check dequeue model.feed_data(data) # check data shape assert model.lq.shape == (1, 3, 8, 8) assert model.gt.shape == (1, 3, 32, 32) # change probability to test if-else model.opt['gaussian_noise_prob'] = 0 model.opt['gray_noise_prob'] = 0 model.opt['second_blur_prob'] = 0 model.opt['gaussian_noise_prob2'] = 0 model.opt['gray_noise_prob2'] = 0 model.feed_data(data) # check data shape assert model.lq.shape == (1, 3, 8, 8) assert model.gt.shape == (1, 3, 32, 32) # ----------------- test nondist_validation -------------------- # # construct dataloader dataset_opt = dict( name='Demo', dataroot_gt='tests/data/gt', dataroot_lq='tests/data/lq', io_backend=dict(type='disk'), scale=4, phase='val') dataset = PairedImageDataset(dataset_opt) dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) assert model.is_train is True model.nondist_validation(dataloader, 1, None, False) assert model.is_train is True def test_realesrgan_model(): with open('tests/data/test_realesrgan_model.yml', mode='r') as f: opt = yaml.load(f, Loader=yaml.FullLoader) # build model model = RealESRGANModel(opt) # test attributes assert model.__class__.__name__ == 'RealESRGANModel' assert isinstance(model.net_g, RRDBNet) # generator assert isinstance(model.net_d, UNetDiscriminatorSN) # discriminator assert isinstance(model.cri_pix, L1Loss) assert isinstance(model.cri_perceptual, PerceptualLoss) assert isinstance(model.cri_gan, GANLoss) assert isinstance(model.optimizers[0], torch.optim.Adam) assert isinstance(model.optimizers[1], torch.optim.Adam) # prepare data gt = torch.rand((1, 3, 32, 32), dtype=torch.float32) kernel1 = torch.rand((1, 5, 5), dtype=torch.float32) kernel2 = torch.rand((1, 5, 5), dtype=torch.float32) sinc_kernel = torch.rand((1, 5, 5), dtype=torch.float32) data = dict(gt=gt, kernel1=kernel1, kernel2=kernel2, sinc_kernel=sinc_kernel) model.feed_data(data) # check dequeue model.feed_data(data) # check data shape assert model.lq.shape == (1, 3, 8, 8) assert model.gt.shape == (1, 3, 32, 32) # change probability to test if-else model.opt['gaussian_noise_prob'] = 0 model.opt['gray_noise_prob'] = 0 model.opt['second_blur_prob'] = 0 model.opt['gaussian_noise_prob2'] = 0 model.opt['gray_noise_prob2'] = 0 model.feed_data(data) # check data shape assert model.lq.shape == (1, 3, 8, 8) assert model.gt.shape == (1, 3, 32, 32) # ----------------- test nondist_validation -------------------- # # construct dataloader dataset_opt = dict( name='Demo', dataroot_gt='tests/data/gt', dataroot_lq='tests/data/lq', io_backend=dict(type='disk'), scale=4, phase='val') dataset = PairedImageDataset(dataset_opt) dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) assert model.is_train is True model.nondist_validation(dataloader, 1, None, False) assert model.is_train is True # ----------------- test optimize_parameters -------------------- # model.feed_data(data) model.optimize_parameters(1) assert model.output.shape == (1, 3, 32, 32) assert isinstance(model.log_dict, dict) # check returned keys expected_keys = ['l_g_pix', 'l_g_percep', 'l_g_gan', 'l_d_real', 'out_d_real', 'l_d_fake', 'out_d_fake'] assert set(expected_keys).issubset(set(model.log_dict.keys()))