import os import tensorflow as tf os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import numpy as np import PIL.Image import gradio as gr import tensorflow_hub as hub import matplotlib.pyplot as plt from real_esrgan_app import * ''' inference(img,mode) ''' hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') def tensor_to_image(tensor): tensor = tensor*255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor)>3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) style_urls = { 'Kanagawa great wave': 'The_Great_Wave_off_Kanagawa.jpg', 'Kandinsky composition 7': 'Kandinsky_Composition_7.jpg', 'Hubble pillars of creation': 'Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg', 'Van gogh starry night': 'Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg', 'Turner nantes': 'JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg', 'Munch scream': 'Edvard_Munch.jpg', 'Picasso demoiselles avignon': 'Les_Demoiselles.jpg', 'Picasso violin': 'picaso_violin.jpg', 'Picasso bottle of rum': 'picaso_rum.jpg', 'Fire': 'Large_bonfire.jpg', 'Derkovits woman head': 'Derkovits_Gyula_Woman_head_1922.jpg', 'Amadeo style life': 'Amadeo_Souza_Cardoso.jpg', 'Derkovtis talig': 'Derkovits_Gyula_Talig.jpg', 'Kadishman': 'kadishman.jpeg' } style_images = [k for k, v in style_urls.items()] def image_click(images, evt: gr.SelectData, ): img_selected = images[evt.index]["name"] #print(img_selected) return img_selected #radio_style = gr.Radio(style_images, label="Choose Style") def perform_neural_transfer(content_image_input, style_image_input, super_resolution_type, hub_module = hub_module): content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255. content_image = tf.image.resize(content_image, (400, 600)) #style_image_input = style_urls[style_image_input] #style_image_input = plt.imread(style_image_input) style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255. style_image = tf.image.resize(style_image, (256, 256)) outputs = hub_module(tf.constant(content_image), tf.constant(style_image)) stylized_image = outputs[0] stylized_image = tensor_to_image(stylized_image) content_image_input = tensor_to_image(content_image_input) stylized_image = stylized_image.resize(content_image_input.size) print("super_resolution_type :") print(super_resolution_type) #print(super_resolution_type.value) if super_resolution_type not in ["base", "anime"]: return stylized_image else: print("call else :") stylized_image = inference(stylized_image, super_resolution_type) return stylized_image with gr.Blocks() as demo: gr.HTML("

🐑 Art Generation with Neural Style Transfer Fixed by Real-ESRGAN

") with gr.Row(): style_reference_input_gallery = gr.Gallery(list(style_urls.values()), #width = 512, height = 768 + 128, label = "Style Image gallery (click to use)") with gr.Column(): #super_resolution_type = gr.Radio(["base", "anime", "none"], type="value", default="base", label="choose Real-ESRGAN model type used to super resolution the Image Transformed") super_resolution_type = gr.Radio(choices = ["base", "anime", "none"], value="base", label="choose Real-ESRGAN model type used to super resolution the Image Transformed", interactive = True) style_reference_input_image = gr.Image( label = "Style Image (you can upload yourself or click from left gallery)", #width = 512, interactive = True, value = style_urls["Kanagawa great wave"] ) content_image_input = gr.Image(label="Content Image", interactive = True, #width = 512 ) trans_image_output = gr.Image(label="Image Transformed", interactive = True, #width = 512 ) trans_button = gr.Button(label = "transform Content image style from Style Image") style_reference_input_gallery.select( image_click, style_reference_input_gallery, style_reference_input_image ) trans_button.click(perform_neural_transfer, [content_image_input, style_reference_input_image, super_resolution_type], trans_image_output) gr.Examples( [ [style_urls["Kanagawa great wave"], style_urls["Kadishman"], "none"], [style_urls["Derkovits woman head"], style_urls["Kadishman"], "base"], [style_urls["Kadishman"], style_urls["Kadishman"], "anime"], ], inputs = [style_reference_input_image, content_image_input, super_resolution_type], label = "Transform Examples" ) demo.launch()