from PIL import Image, ImageEnhance, ImageOps import string from collections import Counter from itertools import tee, count import pytesseract from pytesseract import Output import json import pandas as pd # import matplotlib.pyplot as plt import cv2 import numpy as np from transformers import DetrFeatureExtractor from transformers import TableTransformerForObjectDetection import torch import gradio as gr import pdf2image def plot_results_detection( model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax ): plt.imshow(image) ax = plt.gca() for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()): cl = p.argmax() xmin, ymin, xmax, ymax = ( xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax, ) ax.add_patch( plt.Rectangle( (xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color="red", linewidth=3, ) ) text = f"{model.config.id2label[cl.item()]}: {p[cl]:0.2f}" ax.text( xmin - 20, ymin - 50, text, fontsize=10, bbox=dict(facecolor="yellow", alpha=0.5), ) plt.axis("off") def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax): """ crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates """ cropped_img_list = [] for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): xmin, ymin, xmax, ymax = ( xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax, ) cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) cropped_img_list.append(cropped_img) return cropped_img_list def add_padding(pil_img, top, right, bottom, left, color=(255, 255, 255)): """ Image padding as part of TSR pre-processing to prevent missing table edges """ width, height = pil_img.size new_width = width + right + left new_height = height + top + bottom result = Image.new(pil_img.mode, (new_width, new_height), color) result.paste(pil_img, (left, top)) return result def table_detector(image, THRESHOLD_PROBA): """ Table detection using DEtect-object TRansformer pre-trained on 1 million tables """ feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800) encoding = feature_extractor(image, return_tensors="pt") model = TableTransformerForObjectDetection.from_pretrained( "microsoft/table-transformer-detection" ) with torch.no_grad(): outputs = model(**encoding) probas = outputs.logits.softmax(-1)[0, :, :-1] keep = probas.max(-1).values > THRESHOLD_PROBA target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) bboxes_scaled = postprocessed_outputs[0]["boxes"][keep] return (model, probas[keep], bboxes_scaled) def table_struct_recog(image, THRESHOLD_PROBA): """ Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables """ feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000) encoding = feature_extractor(image, return_tensors="pt") model = TableTransformerForObjectDetection.from_pretrained( "microsoft/table-transformer-structure-recognition" ) with torch.no_grad(): outputs = model(**encoding) probas = outputs.logits.softmax(-1)[0, :, :-1] keep = probas.max(-1).values > THRESHOLD_PROBA target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) bboxes_scaled = postprocessed_outputs[0]["boxes"][keep] return (model, probas[keep], bboxes_scaled) def generate_structure( model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom ): colors = ["red", "blue", "green", "yellow", "orange", "violet"] """ Co-ordinates are adjusted here by 3 'pixels' To plot table pillow image and the TSR bounding boxes on the table """ # plt.figure(figsize=(32,20)) # plt.imshow(pil_img) # ax = plt.gca() rows = {} cols = {} idx = 0 for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax cl = p.argmax() class_text = model.config.id2label[cl.item()] text = f"{class_text}: {p[cl]:0.2f}" # or (class_text == 'table column') # if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'): # ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2)) # ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5)) if class_text == "table row": rows["table row." + str(idx)] = ( xmin, ymin - expand_rowcol_bbox_top, xmax, ymax + expand_rowcol_bbox_bottom, ) if class_text == "table column": cols["table column." + str(idx)] = ( xmin, ymin - expand_rowcol_bbox_top, xmax, ymax + expand_rowcol_bbox_bottom, ) idx += 1 # plt.axis('on') return rows, cols def sort_table_featuresv2(rows: dict, cols: dict): # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox rows_ = { table_feature: (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted( rows.items(), key=lambda tup: tup[1][1] ) } cols_ = { table_feature: (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted( cols.items(), key=lambda tup: tup[1][0] ) } return rows_, cols_ def individual_table_featuresv2(pil_img, rows: dict, cols: dict): for k, v in rows.items(): xmin, ymin, xmax, ymax = v cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) rows[k] = xmin, ymin, xmax, ymax, cropped_img for k, v in cols.items(): xmin, ymin, xmax, ymax = v cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) cols[k] = xmin, ymin, xmax, ymax, cropped_img return rows, cols def object_to_cellsv2( master_row: dict, cols: dict, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left, ): """Removes redundant bbox for rows&columns and divides each row into cells from columns Args: Returns: """ cells_img = {} header_idx = 0 row_idx = 0 previous_xmax_col = 0 new_cols = {} new_master_row = {} previous_ymin_row = 0 new_cols = cols new_master_row = master_row ## Below 2 for loops remove redundant bounding boxes ### # for k_col, v_col in cols.items(): # xmin_col, _, xmax_col, _, col_img = v_col # if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col): # print('Found a column with double bbox') # continue # previous_xmax_col = xmax_col # new_cols[k_col] = v_col # for k_row, v_row in master_row.items(): # _, ymin_row, _, ymax_row, row_img = v_row # if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row): # print('Found a row with double bbox') # continue # previous_ymin_row = ymin_row # new_master_row[k_row] = v_row ###################################################### for k_row, v_row in new_master_row.items(): _, _, _, _, row_img = v_row xmax, ymax = row_img.size xa, ya, xb, yb = 0, 0, 0, ymax row_img_list = [] # plt.imshow(row_img) # st.pyplot() for idx, kv in enumerate(new_cols.items()): k_col, v_col = kv xmin_col, _, xmax_col, _, col_img = v_col xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left # plt.imshow(col_img) # st.pyplot() # xa + 3 : to remove borders on the left side of the cropped cell # yb = 3: to remove row information from the above row of the cropped cell # xb - 3: to remove borders on the right side of the cropped cell xa = xmin_col xb = xmax_col if idx == 0: xa = 0 if idx == len(new_cols) - 1: xb = xmax xa, ya, xb, yb = xa, ya, xb, yb row_img_cropped = row_img.crop((xa, ya, xb, yb)) row_img_list.append(row_img_cropped) cells_img[k_row + "." + str(row_idx)] = row_img_list row_idx += 1 return cells_img, len(new_cols), len(new_master_row) - 1 def pytess(cell_pil_img): return " ".join( pytesseract.image_to_data( cell_pil_img, output_type=Output.DICT, config="-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces", )["text"] ).strip() def uniquify(seq, suffs=count(1)): """Make all the items unique by adding a suffix (1, 2, etc). Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list `seq` is mutable sequence of strings. `suffs` is an optional alternative suffix iterable. """ not_unique = [k for k, v in Counter(seq).items() if v > 1] suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique)))) for idx, s in enumerate(seq): try: suffix = str(next(suff_gens[s])) except KeyError: continue else: seq[idx] += suffix return seq def clean_dataframe(df): """ Remove irrelevant symbols that appear with tesseractOCR """ # df.columns = [col.replace('|', '') for col in df.columns] for col in df.columns: df[col] = df[col].str.replace("'", "", regex=True) df[col] = df[col].str.replace('"', "", regex=True) df[col] = df[col].str.replace("]", "", regex=True) df[col] = df[col].str.replace("[", "", regex=True) df[col] = df[col].str.replace("{", "", regex=True) df[col] = df[col].str.replace("}", "", regex=True) df[col] = df[col].str.replace("|", "", regex=True) return df def create_dataframe(cells_pytess_result: list, max_cols: int, max_rows: int, csv_path): """Create dataframe using list of cell values of the table, also checks for valid header of dataframe Args: cells_pytess_result: list of strings, each element representing a cell in a table max_cols, max_rows: number of columns and rows Returns: dataframe : final dataframe after all pre-processing """ headers = cells_pytess_result[:max_cols] new_headers = uniquify(headers, (f" {x!s}" for x in string.ascii_lowercase)) counter = 0 cells_list = cells_pytess_result[max_cols:] df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers) cell_idx = 0 for nrows in range(max_rows): for ncols in range(max_cols): df.iat[nrows, ncols] = str(cells_list[cell_idx]) cell_idx += 1 ## To check if there are duplicate headers if result of uniquify+col == col ## This check removes headers when all headers are empty or if median of header word count is less than 6 for x, col in zip(string.ascii_lowercase, new_headers): if f" {x!s}" == col: counter += 1 header_char_count = [len(col) for col in new_headers] # if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6): # st.write('woooot') # df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase)) # df = df.iloc[1:,:] df = clean_dataframe(df) # df.to_csv(csv_path) return df def postprocess_dataframes(result_tables): """ Normalize column names """ # df.columns = [col.replace('|', '') for col in df.columns] res = {} for idx, table_df in enumerate(result_tables): result_df = pd.DataFrame() for col in table_df.columns: if col.lower().startswith("item"): result_df["name"] = table_df[col].copy() if ( col.lower().startswith("total") or col.lower().startswith("amount") or col.lower().startswith("cost") ): result_df["amount"] = table_df[col].copy() print(result_df.columns) if len(result_df.columns) == 0: result_df["name"] = table_df.iloc[:, 0].copy() result_df["amount"] = table_df.iloc[:, 1].copy() result_df["cost_code"] = "" res["Table1" + str(idx)] = result_df.to_json(orient="records") return res def process_image(image): # if pdf: # path_to_pdf = pdf.name # # convert PDF to PIL images (one image by page) # first_page=True # we want here only the first page as image # if first_page: last_page = 1 # else: last_page = None # imgs = pdf2image.convert_from_path(path_to_pdf, last_page=last_page) # image = imgs[0] TD_THRESHOLD = 0.7 TSR_THRESHOLD = 0.8 padd_top = 100 padd_left = 100 padd_bottom = 100 padd_right = 20 delta_xmin = 0 delta_ymin = 0 delta_xmax = 0 delta_ymax = 0 expand_rowcol_bbox_top = 0 expand_rowcol_bbox_bottom = 0 image = image.convert("RGB") model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=TD_THRESHOLD) # plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax) cropped_img_list = crop_tables( image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax ) result = [] for idx, unpadded_table in enumerate(cropped_img_list): table = add_padding( unpadded_table, padd_top, padd_right, padd_bottom, padd_left ) model, probas, bboxes_scaled = table_struct_recog( table, THRESHOLD_PROBA=TSR_THRESHOLD ) rows, cols = generate_structure( model, table, probas, bboxes_scaled, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, ) rows, cols = sort_table_featuresv2(rows, cols) master_row, cols = individual_table_featuresv2(table, rows, cols) cells_img, max_cols, max_rows = object_to_cellsv2( master_row, cols, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left, ) sequential_cell_img_list = [] for k, img_list in cells_img.items(): for img in img_list: sequential_cell_img_list.append(pytess(img)) csv_path = "/content/sample_data/table_" + str(idx) df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path) result.append(df) output = postprocess_dataframes(result) return output title = "Interactive demo OCR: microsoft - table-transformer-detection + tesseract" description = "Demo for microsoft - table-transformer-detection + tesseract" article = "
" examples = [["image_0.png"]] iface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs="text", title=title, description=description, article=article, examples=examples, ) iface.launch(debug=False)