Spaces:
Build error
Build error
Upload 4 files
Browse files- app.py +332 -0
- image_0.png +0 -0
- packages.txt +6 -0
- requirements.txt +47 -0
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageEnhance, ImageOps
|
2 |
+
import string
|
3 |
+
from collections import Counter
|
4 |
+
from itertools import tee, count
|
5 |
+
import pytesseract
|
6 |
+
from pytesseract import Output
|
7 |
+
import json
|
8 |
+
import pandas as pd
|
9 |
+
# import matplotlib.pyplot as plt
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
from transformers import DetrFeatureExtractor
|
13 |
+
from transformers import TableTransformerForObjectDetection
|
14 |
+
import torch
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
def plot_results_detection(model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
18 |
+
plt.imshow(image)
|
19 |
+
ax = plt.gca()
|
20 |
+
|
21 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()):
|
22 |
+
cl = p.argmax()
|
23 |
+
xmin, ymin, xmax, ymax = xmin-delta_xmin, ymin-delta_ymin, xmax+delta_xmax, ymax+delta_ymax
|
24 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color='red', linewidth=3))
|
25 |
+
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
|
26 |
+
ax.text(xmin-20, ymin-50, text, fontsize=10,bbox=dict(facecolor='yellow', alpha=0.5))
|
27 |
+
plt.axis('off')
|
28 |
+
|
29 |
+
def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
30 |
+
'''
|
31 |
+
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
32 |
+
'''
|
33 |
+
cropped_img_list = []
|
34 |
+
|
35 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
36 |
+
|
37 |
+
xmin, ymin, xmax, ymax = xmin-delta_xmin, ymin-delta_ymin, xmax+delta_xmax, ymax+delta_ymax
|
38 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
39 |
+
cropped_img_list.append(cropped_img)
|
40 |
+
return cropped_img_list
|
41 |
+
|
42 |
+
def add_padding(pil_img, top, right, bottom, left, color=(255,255,255)):
|
43 |
+
'''
|
44 |
+
Image padding as part of TSR pre-processing to prevent missing table edges
|
45 |
+
'''
|
46 |
+
width, height = pil_img.size
|
47 |
+
new_width = width + right + left
|
48 |
+
new_height = height + top + bottom
|
49 |
+
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
50 |
+
result.paste(pil_img, (left, top))
|
51 |
+
return result
|
52 |
+
|
53 |
+
def table_detector(image, THRESHOLD_PROBA):
|
54 |
+
'''
|
55 |
+
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
56 |
+
'''
|
57 |
+
|
58 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
|
59 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
60 |
+
|
61 |
+
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")
|
62 |
+
|
63 |
+
with torch.no_grad():
|
64 |
+
outputs = model(**encoding)
|
65 |
+
|
66 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
67 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
68 |
+
|
69 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
70 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
71 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
72 |
+
|
73 |
+
return (model, probas[keep], bboxes_scaled)
|
74 |
+
|
75 |
+
|
76 |
+
def table_struct_recog(image, THRESHOLD_PROBA):
|
77 |
+
'''
|
78 |
+
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
79 |
+
'''
|
80 |
+
|
81 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
|
82 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
83 |
+
|
84 |
+
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
85 |
+
with torch.no_grad():
|
86 |
+
outputs = model(**encoding)
|
87 |
+
|
88 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
89 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
90 |
+
|
91 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
92 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
93 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
94 |
+
|
95 |
+
return (model, probas[keep], bboxes_scaled)
|
96 |
+
|
97 |
+
def generate_structure(model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
|
98 |
+
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
99 |
+
'''
|
100 |
+
Co-ordinates are adjusted here by 3 'pixels'
|
101 |
+
To plot table pillow image and the TSR bounding boxes on the table
|
102 |
+
'''
|
103 |
+
# plt.figure(figsize=(32,20))
|
104 |
+
# plt.imshow(pil_img)
|
105 |
+
# ax = plt.gca()
|
106 |
+
rows = {}
|
107 |
+
cols = {}
|
108 |
+
idx = 0
|
109 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
110 |
+
|
111 |
+
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
|
112 |
+
cl = p.argmax()
|
113 |
+
class_text = model.config.id2label[cl.item()]
|
114 |
+
text = f'{class_text}: {p[cl]:0.2f}'
|
115 |
+
# or (class_text == 'table column')
|
116 |
+
# if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
|
117 |
+
# ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2))
|
118 |
+
# ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5))
|
119 |
+
|
120 |
+
if class_text == 'table row':
|
121 |
+
rows['table row.'+str(idx)] = (xmin, ymin-expand_rowcol_bbox_top, xmax, ymax+expand_rowcol_bbox_bottom)
|
122 |
+
if class_text == 'table column':
|
123 |
+
cols['table column.'+str(idx)] = (xmin, ymin-expand_rowcol_bbox_top, xmax, ymax+expand_rowcol_bbox_bottom)
|
124 |
+
|
125 |
+
idx += 1
|
126 |
+
|
127 |
+
# plt.axis('on')
|
128 |
+
return rows, cols
|
129 |
+
|
130 |
+
def sort_table_featuresv2(rows:dict, cols:dict):
|
131 |
+
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
132 |
+
rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])}
|
133 |
+
cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}
|
134 |
+
|
135 |
+
return rows_, cols_
|
136 |
+
|
137 |
+
def individual_table_featuresv2(pil_img, rows:dict, cols:dict):
|
138 |
+
|
139 |
+
for k, v in rows.items():
|
140 |
+
xmin, ymin, xmax, ymax = v
|
141 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
142 |
+
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
143 |
+
|
144 |
+
for k, v in cols.items():
|
145 |
+
xmin, ymin, xmax, ymax = v
|
146 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
147 |
+
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
148 |
+
|
149 |
+
return rows, cols
|
150 |
+
|
151 |
+
def object_to_cellsv2(master_row:dict, cols:dict, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left):
|
152 |
+
'''Removes redundant bbox for rows&columns and divides each row into cells from columns
|
153 |
+
Args:
|
154 |
+
Returns:
|
155 |
+
|
156 |
+
'''
|
157 |
+
cells_img = {}
|
158 |
+
header_idx = 0
|
159 |
+
row_idx = 0
|
160 |
+
previous_xmax_col = 0
|
161 |
+
new_cols = {}
|
162 |
+
new_master_row = {}
|
163 |
+
previous_ymin_row = 0
|
164 |
+
new_cols = cols
|
165 |
+
new_master_row = master_row
|
166 |
+
## Below 2 for loops remove redundant bounding boxes ###
|
167 |
+
# for k_col, v_col in cols.items():
|
168 |
+
# xmin_col, _, xmax_col, _, col_img = v_col
|
169 |
+
# if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col):
|
170 |
+
# print('Found a column with double bbox')
|
171 |
+
# continue
|
172 |
+
# previous_xmax_col = xmax_col
|
173 |
+
# new_cols[k_col] = v_col
|
174 |
+
|
175 |
+
# for k_row, v_row in master_row.items():
|
176 |
+
# _, ymin_row, _, ymax_row, row_img = v_row
|
177 |
+
# if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row):
|
178 |
+
# print('Found a row with double bbox')
|
179 |
+
# continue
|
180 |
+
# previous_ymin_row = ymin_row
|
181 |
+
# new_master_row[k_row] = v_row
|
182 |
+
######################################################
|
183 |
+
for k_row, v_row in new_master_row.items():
|
184 |
+
|
185 |
+
_, _, _, _, row_img = v_row
|
186 |
+
xmax, ymax = row_img.size
|
187 |
+
xa, ya, xb, yb = 0, 0, 0, ymax
|
188 |
+
row_img_list = []
|
189 |
+
# plt.imshow(row_img)
|
190 |
+
# st.pyplot()
|
191 |
+
for idx, kv in enumerate(new_cols.items()):
|
192 |
+
k_col, v_col = kv
|
193 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
194 |
+
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left
|
195 |
+
# plt.imshow(col_img)
|
196 |
+
# st.pyplot()
|
197 |
+
# xa + 3 : to remove borders on the left side of the cropped cell
|
198 |
+
# yb = 3: to remove row information from the above row of the cropped cell
|
199 |
+
# xb - 3: to remove borders on the right side of the cropped cell
|
200 |
+
xa = xmin_col
|
201 |
+
xb = xmax_col
|
202 |
+
if idx == 0:
|
203 |
+
xa = 0
|
204 |
+
if idx == len(new_cols)-1:
|
205 |
+
xb = xmax
|
206 |
+
xa, ya, xb, yb = xa, ya, xb, yb
|
207 |
+
|
208 |
+
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
209 |
+
row_img_list.append(row_img_cropped)
|
210 |
+
|
211 |
+
cells_img[k_row+'.'+str(row_idx)] = row_img_list
|
212 |
+
row_idx += 1
|
213 |
+
|
214 |
+
return cells_img, len(new_cols), len(new_master_row)-1
|
215 |
+
|
216 |
+
def pytess(cell_pil_img):
|
217 |
+
return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces')['text']).strip()
|
218 |
+
|
219 |
+
def uniquify(seq, suffs = count(1)):
|
220 |
+
"""Make all the items unique by adding a suffix (1, 2, etc).
|
221 |
+
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
|
222 |
+
`seq` is mutable sequence of strings.
|
223 |
+
`suffs` is an optional alternative suffix iterable.
|
224 |
+
"""
|
225 |
+
not_unique = [k for k,v in Counter(seq).items() if v>1]
|
226 |
+
|
227 |
+
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
|
228 |
+
for idx,s in enumerate(seq):
|
229 |
+
try:
|
230 |
+
suffix = str(next(suff_gens[s]))
|
231 |
+
except KeyError:
|
232 |
+
continue
|
233 |
+
else:
|
234 |
+
seq[idx] += suffix
|
235 |
+
|
236 |
+
return seq
|
237 |
+
|
238 |
+
def clean_dataframe(df):
|
239 |
+
'''
|
240 |
+
Remove irrelevant symbols that appear with tesseractOCR
|
241 |
+
'''
|
242 |
+
# df.columns = [col.replace('|', '') for col in df.columns]
|
243 |
+
|
244 |
+
for col in df.columns:
|
245 |
+
|
246 |
+
df[col]=df[col].str.replace("'", '', regex=True)
|
247 |
+
df[col]=df[col].str.replace('"', '', regex=True)
|
248 |
+
df[col]=df[col].str.replace(']', '', regex=True)
|
249 |
+
df[col]=df[col].str.replace('[', '', regex=True)
|
250 |
+
df[col]=df[col].str.replace('{', '', regex=True)
|
251 |
+
df[col]=df[col].str.replace('}', '', regex=True)
|
252 |
+
df[col]=df[col].str.replace('|', '', regex=True)
|
253 |
+
return df
|
254 |
+
|
255 |
+
def create_dataframe(cells_pytess_result:list, max_cols:int, max_rows:int,csv_path):
|
256 |
+
'''Create dataframe using list of cell values of the table, also checks for valid header of dataframe
|
257 |
+
Args:
|
258 |
+
cells_pytess_result: list of strings, each element representing a cell in a table
|
259 |
+
max_cols, max_rows: number of columns and rows
|
260 |
+
Returns:
|
261 |
+
dataframe : final dataframe after all pre-processing
|
262 |
+
'''
|
263 |
+
|
264 |
+
headers = cells_pytess_result[:max_cols]
|
265 |
+
new_headers = uniquify(headers, (f' {x!s}' for x in string.ascii_lowercase))
|
266 |
+
counter = 0
|
267 |
+
|
268 |
+
cells_list = cells_pytess_result[max_cols:]
|
269 |
+
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers)
|
270 |
+
|
271 |
+
cell_idx = 0
|
272 |
+
for nrows in range(max_rows):
|
273 |
+
for ncols in range(max_cols):
|
274 |
+
df.iat[nrows, ncols] = str(cells_list[cell_idx])
|
275 |
+
cell_idx += 1
|
276 |
+
|
277 |
+
## To check if there are duplicate headers if result of uniquify+col == col
|
278 |
+
## This check removes headers when all headers are empty or if median of header word count is less than 6
|
279 |
+
for x, col in zip(string.ascii_lowercase, new_headers):
|
280 |
+
if f' {x!s}' == col:
|
281 |
+
counter += 1
|
282 |
+
header_char_count = [len(col) for col in new_headers]
|
283 |
+
|
284 |
+
# if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6):
|
285 |
+
# st.write('woooot')
|
286 |
+
# df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase))
|
287 |
+
# df = df.iloc[1:,:]
|
288 |
+
|
289 |
+
df = clean_dataframe(df)
|
290 |
+
# df.to_csv(csv_path)
|
291 |
+
|
292 |
+
return df
|
293 |
+
|
294 |
+
def process_image(image, TD_THRESHOLD, TSR_THRESHOLD, padd_top, padd_left, padd_bottom, padd_right, delta_xmin = 0, delta_ymin = 0, delta_xmax = 0, delta_ymax = 0, expand_rowcol_bbox_top = 0, expand_rowcol_bbox_bottom = 0):
|
295 |
+
image = image.convert('RGB')
|
296 |
+
model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=TD_THRESHOLD)
|
297 |
+
# plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
|
298 |
+
cropped_img_list = crop_tables(image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
|
299 |
+
|
300 |
+
result = []
|
301 |
+
for idx, unpadded_table in enumerate(cropped_img_list):
|
302 |
+
table = add_padding(unpadded_table, padd_top, padd_right, padd_bottom, padd_left)
|
303 |
+
model, probas, bboxes_scaled = table_struct_recog(table, THRESHOLD_PROBA=TSR_THRESHOLD)
|
304 |
+
rows, cols = generate_structure(model, table, probas, bboxes_scaled, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom)
|
305 |
+
rows, cols = sort_table_featuresv2(rows, cols)
|
306 |
+
master_row, cols = individual_table_featuresv2(table, rows, cols)
|
307 |
+
cells_img, max_cols, max_rows = object_to_cellsv2(master_row, cols, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left)
|
308 |
+
sequential_cell_img_list = []
|
309 |
+
for k, img_list in cells_img.items():
|
310 |
+
for img in img_list:
|
311 |
+
sequential_cell_img_list.append(pytess(img))
|
312 |
+
|
313 |
+
csv_path = '/content/sample_data/table_' + str(idx)
|
314 |
+
df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path)
|
315 |
+
result.append(df)
|
316 |
+
res = result[0].to_json()
|
317 |
+
return res
|
318 |
+
|
319 |
+
|
320 |
+
title = "Interactive demo OCR: microsoft - table-transformer-detection + tesseract"
|
321 |
+
description = "Demo for microsoft - table-transformer-detection + tesseract"
|
322 |
+
article = "<p style='text-align: center'></p>"
|
323 |
+
examples =[["image_0.png"]]
|
324 |
+
|
325 |
+
iface = gr.Interface(fn=process_image,
|
326 |
+
inputs=[gr.Image(type="pil"), gr.Slider(0, 1, value=0.9), gr.Slider(0, 1, value=0.8), gr.Slider(0, 200, value=100), gr.Slider(0, 200, value=100), gr.Slider(0, 200, value=100), gr.Slider(0, 200, value=100)],
|
327 |
+
outputs="text",
|
328 |
+
title=title,
|
329 |
+
description=description,
|
330 |
+
article=article,
|
331 |
+
examples=examples)
|
332 |
+
iface.launch(debug=True)
|
image_0.png
ADDED
packages.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
libsm6
|
3 |
+
libxext6
|
4 |
+
libgl1
|
5 |
+
tesseract-ocr-eng
|
6 |
+
python3-opencv
|
requirements.txt
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython==0.29.14
|
2 |
+
dask==2021.3.1
|
3 |
+
datasets==1.18.3
|
4 |
+
Flask==2.0.1
|
5 |
+
GitPython==3.1.26
|
6 |
+
imutils==0.5.4
|
7 |
+
multiprocess==0.70.12.2
|
8 |
+
numba==0.54.1
|
9 |
+
numexpr==2.7.3
|
10 |
+
numpy==1.20.3
|
11 |
+
oauthlib==3.1.0
|
12 |
+
opencv-contrib-python==4.6.0.66
|
13 |
+
openpyxl==3.0.7
|
14 |
+
Pillow==9.0.1
|
15 |
+
plotly==4.14.3
|
16 |
+
ply==3.11
|
17 |
+
protobuf==3.14.0
|
18 |
+
psutil==5.8.0
|
19 |
+
pyarrow==7.0.0
|
20 |
+
pydantic==1.7.3
|
21 |
+
pydeck==0.7.1
|
22 |
+
PyDictionary==2.0.1
|
23 |
+
pydot==1.4.2
|
24 |
+
pymongo==4.0.2
|
25 |
+
Pympler==1.0.1
|
26 |
+
PyMuPDF==1.20.2
|
27 |
+
pyperclip==1.8.2
|
28 |
+
pyppeteer==0.2.5
|
29 |
+
pyquery==1.4.3
|
30 |
+
pyreadline3==3.3
|
31 |
+
pytesseract==0.3.10
|
32 |
+
pytz-deprecation-shim==0.1.0.post0
|
33 |
+
PyWavelets==1.1.1
|
34 |
+
PyYAML==5.4.1
|
35 |
+
scipy==1.4.1
|
36 |
+
seaborn==0.11.1
|
37 |
+
sklearn==0.0
|
38 |
+
streamlit==1.5.1
|
39 |
+
timm==0.6.7
|
40 |
+
tokenizers==0.12.1
|
41 |
+
toml==0.10.2
|
42 |
+
toolz==0.11.1
|
43 |
+
torch==1.10.0
|
44 |
+
torchvision==0.11.1
|
45 |
+
git+https://github.com/huggingface/transformers.git
|
46 |
+
#-e git+https://github.com/nielsrogge/transformers.git@d34f7e6ffbb911d39465173ef2b35ba147ef58a9#egg=transformers
|
47 |
+
urllib3==1.26.7
|