Spaces:
Runtime error
Runtime error
import torch | |
from diffusers import StableVideoDiffusionPipeline | |
from diffusers.utils import load_image, export_to_video | |
# Load the StableVideoDiffusionPipeline with optimizations for lower memory usage | |
pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid-xt", | |
torch_dtype=torch.float32, # Use float32 since float16 is not supported on CPU | |
low_cpu_mem_usage=True # Reduce CPU memory usage | |
) | |
pipe.enable_attention_slicing() # Enable memory-efficient attention | |
pipe.to("cpu") # Explicitly move the pipeline to CPU | |
# Load the conditioning image and resize to a smaller resolution for memory optimization | |
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png") | |
image = image.resize((256, 144)) # Further reduce the resolution to minimize memory usage | |
# Set a manual seed for reproducibility | |
generator = torch.manual_seed(42) | |
# Generate video frames with a reduced decode_chunk_size and fewer inference steps to lower memory consumption | |
frames = pipe(image, decode_chunk_size=2, generator=generator, num_inference_steps=10).frames[0] | |
# Export the generated frames to a video file with a lower FPS for memory optimization | |
export_to_video(frames, "generated.mp4", fps=4) # Lower FPS to reduce memory usage | |