initial upload
Browse files- app.py +66 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from transformers import AutoModelForImageSegmentation
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
import gradio as gr
|
8 |
+
# Set up CUDA if available
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
torch.set_float32_matmul_precision("high")
|
11 |
+
|
12 |
+
# Load the model
|
13 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
14 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
15 |
+
)
|
16 |
+
birefnet.to(device)
|
17 |
+
|
18 |
+
# Define image transformations
|
19 |
+
transform_image = transforms.Compose([
|
20 |
+
transforms.Resize((256, 256)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
23 |
+
])
|
24 |
+
|
25 |
+
|
26 |
+
def load_img(image_path_or_url):
|
27 |
+
if image_path_or_url.startswith('http'):
|
28 |
+
response = requests.get(image_path_or_url)
|
29 |
+
img = Image.open(BytesIO(response.content))
|
30 |
+
else:
|
31 |
+
img = Image.open(image_path_or_url)
|
32 |
+
return img.convert("RGB")
|
33 |
+
|
34 |
+
def process(image):
|
35 |
+
image_size = image.size
|
36 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
40 |
+
|
41 |
+
pred = preds[0].squeeze()
|
42 |
+
pred_pil = transforms.ToPILImage()(pred)
|
43 |
+
mask = pred_pil.resize(image_size)
|
44 |
+
|
45 |
+
# Create a new image with transparency
|
46 |
+
transparent_image = Image.new("RGBA", image.size)
|
47 |
+
transparent_image.paste(image, (0, 0))
|
48 |
+
transparent_image.putalpha(mask) # Apply mask to the new image
|
49 |
+
|
50 |
+
return transparent_image # Return the new transparent image
|
51 |
+
|
52 |
+
def remove_background_gradio(image):
|
53 |
+
processed_img = process(image)
|
54 |
+
return processed_img
|
55 |
+
|
56 |
+
|
57 |
+
# Create the Gradio interface with drag-and-drop and paste functionality
|
58 |
+
demo = gr.Interface(
|
59 |
+
fn=remove_background_gradio,
|
60 |
+
inputs=gr.Image(type="pil"), # Remove 'source' argument
|
61 |
+
outputs=gr.Image(type="pil"),
|
62 |
+
title="RemoveBG",
|
63 |
+
description="Upload an image to remove its background (drag-and-drop or upload)."
|
64 |
+
)
|
65 |
+
|
66 |
+
demo.launch(share=True) # Launch the interface and get a shareable link
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
Pillow
|
5 |
+
requests
|
6 |
+
kornia
|
7 |
+
timm
|
8 |
+
gradio
|