Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import json | |
import os | |
from PIL import Image | |
import onnxruntime as rt | |
class ONNXModel: | |
def __init__(self, dir_path) -> None: | |
"""Method to get name of model file. Assumes model is in the parent directory for script.""" | |
model_dir = os.path.dirname(dir_path) | |
with open(os.path.join(model_dir, "signature.json"), "r") as f: | |
self.signature = json.load(f) | |
self.model_file = os.path.join(model_dir, self.signature.get("filename")) | |
if not os.path.isfile(self.model_file): | |
raise FileNotFoundError(f"Model file does not exist") | |
# get the signature for model inputs and outputs | |
self.signature_inputs = self.signature.get("inputs") | |
self.signature_outputs = self.signature.get("outputs") | |
self.session = None | |
if "Image" not in self.signature_inputs: | |
raise ValueError("ONNX model doesn't have 'Image' input! Check signature.json, and please report issue to Lobe.") | |
# Look for the version in signature file. | |
# If it's not found or the doesn't match expected, print a message | |
version = self.signature.get("export_model_version") | |
if version is None or version != EXPORT_MODEL_VERSION: | |
print( | |
f"There has been a change to the model format. Please use a model with a signature 'export_model_version' that matches {EXPORT_MODEL_VERSION}." | |
) | |
def load(self) -> None: | |
"""Load the model from path to model file""" | |
# Load ONNX model as session. | |
self.session = rt.InferenceSession(path_or_bytes=self.model_file) | |
def predict(self, image: Image.Image) -> dict: | |
""" | |
Predict with the ONNX session! | |
""" | |
# process image to be compatible with the model | |
img = self.process_image(image, self.signature_inputs.get("Image").get("shape")) | |
# run the model! | |
fetches = [(key, value.get("name")) for key, value in self.signature_outputs.items()] | |
# make the image a batch of 1 | |
feed = {self.signature_inputs.get("Image").get("name"): [img]} | |
outputs = self.session.run(output_names=[name for (_, name) in fetches], input_feed=feed) | |
return self.process_output(fetches, outputs) | |
def process_image(self, image: Image.Image, input_shape: list) -> np.ndarray: | |
""" | |
Given a PIL Image, center square crop and resize to fit the expected model input, and convert from [0,255] to [0,1] values. | |
""" | |
width, height = image.size | |
# ensure image type is compatible with model and convert if not | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# center crop image (you can substitute any other method to make a square image, such as just resizing or padding edges with 0) | |
if width != height: | |
square_size = min(width, height) | |
left = (width - square_size) / 2 | |
top = (height - square_size) / 2 | |
right = (width + square_size) / 2 | |
bottom = (height + square_size) / 2 | |
# Crop the center of the image | |
image = image.crop((left, top, right, bottom)) | |
# now the image is square, resize it to be the right shape for the model input | |
input_width, input_height = input_shape[1:3] | |
if image.width != input_width or image.height != input_height: | |
image = image.resize((input_width, input_height)) | |
# make 0-1 float instead of 0-255 int (that PIL Image loads by default) | |
image = np.asarray(image) / 255.0 | |
# format input as model expects | |
return image.astype(np.float32) | |
def process_output(self, fetches: dict, outputs: dict) -> dict: | |
# un-batch since we ran an image with batch size of 1, | |
# convert to normal python types with tolist(), and convert any byte strings to normal strings with .decode() | |
out_keys = ["label", "confidence"] | |
results = {} | |
for i, (key, _) in enumerate(fetches): | |
val = outputs[i].tolist()[0] | |
if isinstance(val, bytes): | |
val = val.decode() | |
results[key] = val | |
confs = results["Confidences"] | |
labels = self.signature.get("classes").get("Label") | |
output = [dict(zip(out_keys, group)) for group in zip(labels, confs)] | |
sorted_output = {"predictions": sorted(output, key=lambda k: k["confidence"], reverse=True)} | |
return sorted_output | |
EXPORT_MODEL_VERSION=1 | |
model = ONNXModel(dir_path="/model/model.onnx") | |
model.load() | |
def predict(image): | |
image = Image.fromarray(np.uint8(image), 'RGB') | |
prediction = model.predict(image) | |
for output in prediction["predictions"]: | |
output["confidence"] = round(output["confidence"], 2) | |
return prediction | |
inputs = gr.inputs.Image(type="pil") | |
outputs = gr.outputs.JSON() | |
gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch() |