Spaces:
Build error
Build error
Sujit Pal
commited on
Commit
•
6d88167
1
Parent(s):
c0c0d12
fix: changes based on evaluation
Browse files- app.py +11 -4
- dashboard_featurefinder.py +85 -47
- dashboard_image2image.py +121 -36
- dashboard_text2image.py +39 -11
- demo-images/Acopulco-Bay.jpg +0 -0
- demo-images/Eagle-Bay-Coastline.jpg +0 -0
- demo-images/Forest-with-River.jpg +0 -0
- demo-images/Highway-through-Forest.jpg +0 -0
- demo-images/Multistoreyed-Buildings.jpg +0 -0
- demo-images/St-Tropez-Port.jpg +0 -0
- demo-images/Street-View-Malayasia.jpg +0 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -5,12 +5,19 @@ import dashboard_featurefinder
|
|
5 |
import streamlit as st
|
6 |
|
7 |
PAGES = {
|
8 |
-
"
|
9 |
-
"
|
10 |
-
"Feature in Image": dashboard_featurefinder,
|
11 |
}
|
12 |
-
st.sidebar.title("
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
selection = st.sidebar.radio("Go to", list(PAGES.keys()))
|
15 |
page = PAGES[selection]
|
16 |
page.app()
|
|
|
5 |
import streamlit as st
|
6 |
|
7 |
PAGES = {
|
8 |
+
"Retrieve Images given Text": dashboard_text2image,
|
9 |
+
"Retrieve Images given Image": dashboard_image2image,
|
10 |
+
"Find Feature in Image": dashboard_featurefinder,
|
11 |
}
|
12 |
+
st.sidebar.title("CLIP-RSICD")
|
13 |
|
14 |
+
st.sidebar.markdown("""
|
15 |
+
The CLIP model from OpenAI is trained in a self-supervised manner using
|
16 |
+
contrastive learning to project images and caption text onto a common
|
17 |
+
embedding space. We have fine-tuned the model (see [Model card](https://huggingface.co/flax-community/clip-rsicd-v2))
|
18 |
+
using the [RSICD dataset](https://github.com/201528014227051/RSICD_optimal).
|
19 |
+
Click here for [more information about our project](https://github.com/arampacha/CLIP-rsicd).
|
20 |
+
""")
|
21 |
selection = st.sidebar.radio("Go to", list(PAGES.keys()))
|
22 |
page = PAGES[selection]
|
23 |
page.app()
|
dashboard_featurefinder.py
CHANGED
@@ -4,6 +4,7 @@ import matplotlib.pyplot as plt
|
|
4 |
import nmslib
|
5 |
import numpy as np
|
6 |
import os
|
|
|
7 |
import streamlit as st
|
8 |
|
9 |
from tempfile import NamedTemporaryFile
|
@@ -61,17 +62,38 @@ def get_image_ranks(probs):
|
|
61 |
return ranks
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def app():
|
65 |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
|
66 |
|
67 |
st.title("Find Features in Images")
|
68 |
st.markdown("""
|
69 |
-
The CLIP model from OpenAI is trained in a self-supervised manner using
|
70 |
-
contrastive learning to project images and caption text onto a common
|
71 |
-
embedding space. We have fine-tuned the model (see [Model card](https://huggingface.co/flax-community/clip-rsicd-v2))
|
72 |
-
using the RSICD dataset (10k images and ~50k captions from the remote
|
73 |
-
sensing domain). Click here for [more information about our project](https://github.com/arampacha/CLIP-rsicd).
|
74 |
-
|
75 |
This demo shows the ability of the model to find specific features
|
76 |
(specified as text queries) in the image. As an example, say you wish to
|
77 |
find the parts of the following image that contain a `beach`, `houses`,
|
@@ -92,46 +114,62 @@ def app():
|
|
92 |
for features that you can ask the model to identify.
|
93 |
""")
|
94 |
# buf = st.file_uploader("Upload Image for Analysis", type=["png", "jpg"])
|
95 |
-
image_file = st.selectbox(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
if st.button("Find"):
|
108 |
-
#
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import nmslib
|
5 |
import numpy as np
|
6 |
import os
|
7 |
+
import requests
|
8 |
import streamlit as st
|
9 |
|
10 |
from tempfile import NamedTemporaryFile
|
|
|
62 |
return ranks
|
63 |
|
64 |
|
65 |
+
def download_and_prepare_image(image_url):
|
66 |
+
"""
|
67 |
+
Take input image and resize it to 672x896
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
image_raw = requests.get(image_url, stream=True,).raw
|
71 |
+
image = Image.open(image_raw).convert("RGB")
|
72 |
+
width, height = image.size
|
73 |
+
# print("WID,HGT:", width, height)
|
74 |
+
if width < 224 or height < 224:
|
75 |
+
return None
|
76 |
+
# take the short edge and reduce to 672
|
77 |
+
if width < height:
|
78 |
+
resize_factor = 672 / width
|
79 |
+
image = image.resize((672, int(height * resize_factor)))
|
80 |
+
image = image.crop((0, 0, 672, 896))
|
81 |
+
else:
|
82 |
+
resize_factor = 672 / height
|
83 |
+
image = image.resize((int(width * resize_factor), 896))
|
84 |
+
image = image.crop((0, 0, 896, 672))
|
85 |
+
return np.asarray(image)
|
86 |
+
except Exception as e:
|
87 |
+
# print(e)
|
88 |
+
return None
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
def app():
|
93 |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
|
94 |
|
95 |
st.title("Find Features in Images")
|
96 |
st.markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
This demo shows the ability of the model to find specific features
|
98 |
(specified as text queries) in the image. As an example, say you wish to
|
99 |
find the parts of the following image that contain a `beach`, `houses`,
|
|
|
114 |
for features that you can ask the model to identify.
|
115 |
""")
|
116 |
# buf = st.file_uploader("Upload Image for Analysis", type=["png", "jpg"])
|
117 |
+
image_file = st.selectbox(
|
118 |
+
"Sample Image File",
|
119 |
+
options=[
|
120 |
+
"-- select one --",
|
121 |
+
"St-Tropez-Port.jpg",
|
122 |
+
"Acopulco-Bay.jpg",
|
123 |
+
"Highway-through-Forest.jpg",
|
124 |
+
"Forest-with-River.jpg",
|
125 |
+
"Eagle-Bay-Coastline.jpg",
|
126 |
+
"Multistoreyed-Buildings.jpg",
|
127 |
+
"Street-View-Malayasia.jpg",
|
128 |
+
])
|
129 |
+
image_url = st.text_input(
|
130 |
+
"OR provide an image URL",
|
131 |
+
value="https://static.eos.com/wp-content/uploads/2019/04/Main.jpg")
|
132 |
+
searched_feature = st.text_input("Feature to find", value="beach")
|
133 |
|
134 |
if st.button("Find"):
|
135 |
+
# print("image_file:", image_file)
|
136 |
+
# print("image_url:", image_url)
|
137 |
+
if image_file.startswith("--"):
|
138 |
+
image = download_and_prepare_image(image_url)
|
139 |
+
else:
|
140 |
+
image = plt.imread(os.path.join("demo-images", image_file))
|
141 |
+
|
142 |
+
if image is None:
|
143 |
+
st.error("Image could not be downloaded, please try another one")
|
144 |
+
else:
|
145 |
+
st.image(image, caption="Input Image")
|
146 |
+
st.markdown("---")
|
147 |
+
# print("image.shape:", image.shape)
|
148 |
+
num_rows, num_cols, patches = split_image(image)
|
149 |
+
# print("num_rows, num_cols, num(patches:", num_rows, num_cols, len(patches), patches[0].shape)
|
150 |
+
image_preprocessor = Compose([
|
151 |
+
ToPILImage(),
|
152 |
+
Resize(224)
|
153 |
+
])
|
154 |
+
num_rows, num_cols, patches = split_image(image)
|
155 |
+
patch_probs = get_patch_probabilities(
|
156 |
+
patches,
|
157 |
+
searched_feature,
|
158 |
+
image_preprocessor,
|
159 |
+
model,
|
160 |
+
processor)
|
161 |
+
patch_ranks = get_image_ranks(patch_probs)
|
162 |
+
pid = 0
|
163 |
+
for i in range(num_rows):
|
164 |
+
cols = st.beta_columns(num_cols)
|
165 |
+
for col in cols:
|
166 |
+
caption = "#{:d} p({:s})={:.3f}".format(
|
167 |
+
patch_ranks[pid] + 1, searched_feature, patch_probs[pid])
|
168 |
+
col.image(patches[pid], caption=caption)
|
169 |
+
pid += 1
|
170 |
+
# row_patches = patches[i * num_cols : (i + 1) * num_cols]
|
171 |
+
# row_probs = patch_probs[i * num_cols : (i + 1) * num_cols]
|
172 |
+
# row_ranks = patch_ranks[i * num_cols : (i + 1) * num_cols]
|
173 |
+
# captions = ["p({:s})={:.3f}, rank={:d}".format(searched_feature, p, r + 1)
|
174 |
+
# for p, r in zip(row_probs, row_ranks)]
|
175 |
+
# st.image(row_patches, caption=captions)
|
dashboard_image2image.py
CHANGED
@@ -2,6 +2,7 @@ import matplotlib.pyplot as plt
|
|
2 |
import nmslib
|
3 |
import numpy as np
|
4 |
import os
|
|
|
5 |
import streamlit as st
|
6 |
|
7 |
from PIL import Image
|
@@ -33,25 +34,48 @@ def load_example_images():
|
|
33 |
example_images[image_class].append(image_name)
|
34 |
else:
|
35 |
example_images[image_class] = [image_name]
|
36 |
-
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def app():
|
40 |
filenames, index = utils.load_index(IMAGE_VECTOR_FILE)
|
41 |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
|
42 |
|
43 |
-
|
44 |
-
example_image_list = sorted([v[np.random.randint(0, len(v))]
|
45 |
-
for k, v in example_images.items()][0:10])
|
46 |
|
47 |
-
st.title("
|
48 |
st.markdown("""
|
49 |
-
The CLIP model from OpenAI is trained in a self-supervised manner using
|
50 |
-
contrastive learning to project images and caption text onto a common
|
51 |
-
embedding space. We have fine-tuned the model (see [Model card](https://huggingface.co/flax-community/clip-rsicd-v2))
|
52 |
-
using the RSICD dataset (10k images and ~50k captions from the remote
|
53 |
-
sensing domain). Click here for [more information about our project](https://github.com/arampacha/CLIP-rsicd).
|
54 |
-
|
55 |
This demo shows the image to image retrieval capabilities of this model, i.e.,
|
56 |
given an image file name as a query, we use our fine-tuned CLIP model
|
57 |
to project the query image to the image/caption embedding space and search
|
@@ -60,31 +84,92 @@ def app():
|
|
60 |
Our fine-tuned CLIP model was previously used to generate image vectors for
|
61 |
our demo, and NMSLib was used for fast vector access.
|
62 |
|
63 |
-
Here are some randomly generated image files from our corpus
|
64 |
-
|
65 |
-
image
|
66 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
|
|
|
|
|
|
69 |
submit_button = st.button("Find Similar")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
2 |
import nmslib
|
3 |
import numpy as np
|
4 |
import os
|
5 |
+
import requests
|
6 |
import streamlit as st
|
7 |
|
8 |
from PIL import Image
|
|
|
34 |
example_images[image_class].append(image_name)
|
35 |
else:
|
36 |
example_images[image_class] = [image_name]
|
37 |
+
example_image_list = sorted([v[np.random.randint(0, len(v))]
|
38 |
+
for k, v in example_images.items()][0:10])
|
39 |
+
return example_image_list
|
40 |
+
|
41 |
|
42 |
+
def get_image_thumbnail(image_filename):
|
43 |
+
image = Image.open(os.path.join(IMAGES_DIR, image_filename))
|
44 |
+
image = image.resize((100, 100))
|
45 |
+
return image
|
46 |
+
|
47 |
+
|
48 |
+
def download_and_prepare_image(image_url):
|
49 |
+
try:
|
50 |
+
image_raw = requests.get(image_url, stream=True,).raw
|
51 |
+
image = Image.open(image_raw).convert("RGB")
|
52 |
+
width, height = image.size
|
53 |
+
# print("width, height:", width, height)
|
54 |
+
resize_mult = width / 224 if width < height else height / 224
|
55 |
+
# print("resize_mult:", resize_mult)
|
56 |
+
# print("resize:", width // resize_mult, height // resize_mult)
|
57 |
+
image = image.resize((int(width // resize_mult),
|
58 |
+
int(height // resize_mult)))
|
59 |
+
width, height = image.size
|
60 |
+
left = int((width - 224) // 2)
|
61 |
+
top = int((height - 224) // 2)
|
62 |
+
right = int((width + 224) // 2)
|
63 |
+
bottom = int((height + 224) // 2)
|
64 |
+
# print("LTRB:", left, top, right, bottom)
|
65 |
+
image = image.crop((left, top, right, bottom))
|
66 |
+
return image
|
67 |
+
except Exception as e:
|
68 |
+
# print(e)
|
69 |
+
return None
|
70 |
|
71 |
def app():
|
72 |
filenames, index = utils.load_index(IMAGE_VECTOR_FILE)
|
73 |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
|
74 |
|
75 |
+
example_image_list = load_example_images()
|
|
|
|
|
76 |
|
77 |
+
st.title("Retrieve Images given Images")
|
78 |
st.markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
This demo shows the image to image retrieval capabilities of this model, i.e.,
|
80 |
given an image file name as a query, we use our fine-tuned CLIP model
|
81 |
to project the query image to the image/caption embedding space and search
|
|
|
84 |
Our fine-tuned CLIP model was previously used to generate image vectors for
|
85 |
our demo, and NMSLib was used for fast vector access.
|
86 |
|
87 |
+
Here are some randomly generated image files from our corpus, that you can
|
88 |
+
find similar images for by selecting the button below it. Alternatively you
|
89 |
+
can upload your own image from the Internet.
|
90 |
+
""")
|
91 |
+
|
92 |
+
suggest_idx = -1
|
93 |
+
col0, col1, col2, col3, col4 = st.beta_columns(5)
|
94 |
+
col0.image(get_image_thumbnail(example_image_list[0]))
|
95 |
+
col1.image(get_image_thumbnail(example_image_list[1]))
|
96 |
+
col2.image(get_image_thumbnail(example_image_list[2]))
|
97 |
+
col3.image(get_image_thumbnail(example_image_list[3]))
|
98 |
+
col4.image(get_image_thumbnail(example_image_list[4]))
|
99 |
+
col0t, col1t, col2t, col3t, col4t = st.beta_columns(5)
|
100 |
+
with col0t:
|
101 |
+
if st.button("Image-1"):
|
102 |
+
suggest_idx = 0
|
103 |
+
with col1t:
|
104 |
+
if st.button("Image-2"):
|
105 |
+
suggest_idx = 1
|
106 |
+
with col2t:
|
107 |
+
if st.button("Image-3"):
|
108 |
+
suggest_idx = 2
|
109 |
+
with col3t:
|
110 |
+
if st.button("Image-4"):
|
111 |
+
suggest_idx = 3
|
112 |
+
with col4t:
|
113 |
+
if st.button("Image-5"):
|
114 |
+
suggest_idx = 4
|
115 |
+
col5, col6, col7, col8, col9 = st.beta_columns(5)
|
116 |
+
col5.image(get_image_thumbnail(example_image_list[5]))
|
117 |
+
col6.image(get_image_thumbnail(example_image_list[6]))
|
118 |
+
col7.image(get_image_thumbnail(example_image_list[7]))
|
119 |
+
col8.image(get_image_thumbnail(example_image_list[8]))
|
120 |
+
col9.image(get_image_thumbnail(example_image_list[9]))
|
121 |
+
col5t, col6t, col7t, col8t, col9t = st.beta_columns(5)
|
122 |
+
with col5t:
|
123 |
+
if st.button("Image-6"):
|
124 |
+
suggest_idx = 5
|
125 |
+
with col6t:
|
126 |
+
if st.button("Image-7"):
|
127 |
+
suggest_idx = 6
|
128 |
+
with col7t:
|
129 |
+
if st.button("Image-8"):
|
130 |
+
suggest_idx = 7
|
131 |
+
with col8t:
|
132 |
+
if st.button("Image-9"):
|
133 |
+
suggest_idx = 8
|
134 |
+
with col9t:
|
135 |
+
if st.button("Image-10"):
|
136 |
+
suggest_idx = 9
|
137 |
|
138 |
+
image_url = st.text_input(
|
139 |
+
"OR provide an image URL",
|
140 |
+
value="https://media.wired.com/photos/5a8c80647b7bd44d86b88077/master/w_2240,c_limit/Satellite-FINAL.jpg")
|
141 |
+
|
142 |
submit_button = st.button("Find Similar")
|
143 |
+
|
144 |
+
if submit_button or suggest_idx > -1:
|
145 |
+
image_name = None
|
146 |
+
if suggest_idx > -1:
|
147 |
+
image_name = example_image_list[suggest_idx]
|
148 |
+
image = Image.fromarray(plt.imread(os.path.join(IMAGES_DIR, image_name)))
|
149 |
+
else:
|
150 |
+
image = download_and_prepare_image(image_url)
|
151 |
+
st.image(image, caption="Input Image")
|
152 |
+
st.markdown("---")
|
153 |
|
154 |
+
if image is None:
|
155 |
+
st.error("Image could not be downloaded, please try another one!")
|
156 |
+
else:
|
157 |
+
inputs = processor(images=image, return_tensors="jax", padding=True)
|
158 |
+
query_vec = model.get_image_features(**inputs)
|
159 |
+
query_vec = np.asarray(query_vec)
|
160 |
+
ids, distances = index.knnQuery(query_vec, k=11)
|
161 |
+
result_filenames = [filenames[id] for id in ids]
|
162 |
+
images, captions = [], []
|
163 |
+
for result_filename, score in zip(result_filenames, distances):
|
164 |
+
if image_name is not None and result_filename == image_name:
|
165 |
+
continue
|
166 |
+
images.append(
|
167 |
+
plt.imread(os.path.join(IMAGES_DIR, result_filename)))
|
168 |
+
captions.append("{:s} (score: {:.3f})".format(result_filename, 1.0 - score))
|
169 |
+
images = images[0:10]
|
170 |
+
captions = captions[0:10]
|
171 |
+
st.image(images[0:3], caption=captions[0:3])
|
172 |
+
st.image(images[3:6], caption=captions[3:6])
|
173 |
+
st.image(images[6:9], caption=captions[6:9])
|
174 |
+
st.image(images[9:], caption=captions[9:])
|
175 |
+
suggest_idx = -1
|
dashboard_text2image.py
CHANGED
@@ -24,14 +24,8 @@ def app():
|
|
24 |
filenames, index = utils.load_index(IMAGE_VECTOR_FILE)
|
25 |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
|
26 |
|
27 |
-
st.title("
|
28 |
st.markdown("""
|
29 |
-
The CLIP model from OpenAI is trained in a self-supervised manner using
|
30 |
-
contrastive learning to project images and caption text onto a common
|
31 |
-
embedding space. We have fine-tuned the model (see [Model card](https://huggingface.co/flax-community/clip-rsicd-v2))
|
32 |
-
using the RSICD dataset (10k images and ~50k captions from the remote
|
33 |
-
sensing domain). Click here for [more information about our project](https://github.com/arampacha/CLIP-rsicd).
|
34 |
-
|
35 |
This demo shows the image to text retrieval capabilities of this model, i.e.,
|
36 |
given a text query, we use our fine-tuned CLIP model to project the text query
|
37 |
to the image/caption embedding space and search for nearby images (by
|
@@ -40,12 +34,45 @@ def app():
|
|
40 |
Our fine-tuned CLIP model was previously used to generate image vectors for
|
41 |
our demo, and NMSLib was used for fast vector access.
|
42 |
|
43 |
-
Some suggested queries to start you off with -- `ships`, `school house`,
|
44 |
-
`military installations`, `mountains`, `beaches`, `airports`, `lakes`, etc.
|
45 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
if st.button("Query"):
|
49 |
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True)
|
50 |
query_vec = model.get_text_features(**inputs)
|
51 |
query_vec = np.asarray(query_vec)
|
@@ -60,3 +87,4 @@ def app():
|
|
60 |
st.image(images[3:6], caption=captions[3:6])
|
61 |
st.image(images[6:9], caption=captions[6:9])
|
62 |
st.image(images[9:], caption=captions[9:])
|
|
|
|
24 |
filenames, index = utils.load_index(IMAGE_VECTOR_FILE)
|
25 |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
|
26 |
|
27 |
+
st.title("Retrieve Images given Text")
|
28 |
st.markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
This demo shows the image to text retrieval capabilities of this model, i.e.,
|
30 |
given a text query, we use our fine-tuned CLIP model to project the text query
|
31 |
to the image/caption embedding space and search for nearby images (by
|
|
|
34 |
Our fine-tuned CLIP model was previously used to generate image vectors for
|
35 |
our demo, and NMSLib was used for fast vector access.
|
36 |
|
|
|
|
|
37 |
""")
|
38 |
+
suggested_query = [
|
39 |
+
"ships",
|
40 |
+
"school house",
|
41 |
+
"military installation",
|
42 |
+
"mountains",
|
43 |
+
"beaches",
|
44 |
+
"airports",
|
45 |
+
"lakes"
|
46 |
+
]
|
47 |
+
st.text("Some suggested queries to start you off with...")
|
48 |
+
col0, col1, col2, col3, col4, col5, col6 = st.beta_columns(7)
|
49 |
+
# [1, 1.1, 1.3, 1.1, 1, 1, 1])
|
50 |
+
suggest_idx = -1
|
51 |
+
with col0:
|
52 |
+
if st.button(suggested_query[0]):
|
53 |
+
suggest_idx = 0
|
54 |
+
with col1:
|
55 |
+
if st.button(suggested_query[1]):
|
56 |
+
suggest_idx = 1
|
57 |
+
with col2:
|
58 |
+
if st.button(suggested_query[2]):
|
59 |
+
suggest_idx = 2
|
60 |
+
with col3:
|
61 |
+
if st.button(suggested_query[3]):
|
62 |
+
suggest_idx = 3
|
63 |
+
with col4:
|
64 |
+
if st.button(suggested_query[4]):
|
65 |
+
suggest_idx = 4
|
66 |
+
with col5:
|
67 |
+
if st.button(suggested_query[5]):
|
68 |
+
suggest_idx = 5
|
69 |
+
with col6:
|
70 |
+
if st.button(suggested_query[6]):
|
71 |
+
suggest_idx = 6
|
72 |
+
query = st.text_input("OR enter a text Query:")
|
73 |
+
query = suggested_query[suggest_idx] if suggest_idx > -1 else query
|
74 |
|
75 |
+
if st.button("Query") or suggest_idx > -1:
|
|
|
76 |
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True)
|
77 |
query_vec = model.get_text_features(**inputs)
|
78 |
query_vec = np.asarray(query_vec)
|
|
|
87 |
st.image(images[3:6], caption=captions[3:6])
|
88 |
st.image(images[6:9], caption=captions[6:9])
|
89 |
st.image(images[9:], caption=captions[9:])
|
90 |
+
suggest_idx = -1
|
demo-images/Acopulco-Bay.jpg
CHANGED
demo-images/Eagle-Bay-Coastline.jpg
CHANGED
demo-images/Forest-with-River.jpg
CHANGED
demo-images/Highway-through-Forest.jpg
CHANGED
demo-images/Multistoreyed-Buildings.jpg
CHANGED
demo-images/St-Tropez-Port.jpg
CHANGED
demo-images/Street-View-Malayasia.jpg
CHANGED
requirements.txt
CHANGED
@@ -6,3 +6,4 @@ jaxlib
|
|
6 |
flax
|
7 |
torch==1.9.0
|
8 |
torchvision==0.10.0
|
|
|
|
6 |
flax
|
7 |
torch==1.9.0
|
8 |
torchvision==0.10.0
|
9 |
+
requests
|