su
requirements and app file
9ef92ae
raw
history blame
3.64 kB
import gradio as gr
import requests
import os
import json
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
bearer_token = os.environ.get("BEARER_TOKEN")
print(bearer_token)
search_url = "https://api.twitter.com/2/tweets/search/recent"
def bearer_oauth(r):
"""
Method required by bearer token authentication.
"""
r.headers["Authorization"] = f"Bearer {bearer_token}"
r.headers["User-Agent"] = "v2RecentSearchPython"
return r
def connect_to_endpoint(url, params):
response = requests.get(url, auth=bearer_oauth, params=params)
print(response.status_code)
if response.status_code != 200:
raise Exception(response.status_code, response.text)
return response.json()
def fetch_tweets(tag):
q = "\"" + tag + "\""
query_params = {'query': q, 'tweet.fields': 'author_id', 'max_results': 100}
json_response = connect_to_endpoint(search_url, query_params)
#print(json.dumps(json_response, indent=4, sort_keys=True))
phrases = []
for entry in json_response["data"]:
phrases.append(entry["text"])
return phrases
pipe = pipeline("text-classification", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
def analyze_phrases(phrases):
positive = 0
positive_examples = {}
negative = 0
negative_examples = {}
neutral = 0
neutral_examples = {}
outputs = pipe(phrases)
for index, x in enumerate(outputs):
if x['label'] == 'positive':
positive += 1
if positive <= 3:
positive_examples[phrases[index]] = x['score']
elif x['label'] == 'neutral':
neutral += 1
if neutral <= 3:
neutral_examples[phrases[index]] = x['score']
elif x['label'] == 'negative':
negative += 1
if negative <= 3:
negative_examples[phrases[index]] = x['score']
else:
pass
counts = [positive, neutral, negative]
return counts, positive_examples, neutral_examples, negative_examples
def calculate_sentiment(tag):
phrases = fetch_tweets(tag)
counts, positive_examples, neutral_examples, negative_examples = analyze_phrases(phrases)
output = "positive: " + str(counts[0]) + "\n" + "neutral: " + str(counts[1]) + "\n" + "negative: " + str(counts[2])
plt.style.use('_mpl-gallery-nogrid')
# make data
colors = ['green', 'yellow', 'red']
labels = ["Positive", "Neutral", "Negative"]
# plot
fig, ax = plt.subplots(figsize=(10, 6))
wedges, texts = ax.pie(counts, colors=colors, radius=3, center=(4, 4),
wedgeprops={"linewidth": 1, "edgecolor": "white"}, labeldistance=1.05)
# Create a legend
ax.legend(wedges, labels, title="Categories", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
ax.set(xlim=(0, 8),
ylim=(0, 8))
print(positive_examples)
html_content = ""
positive_tweets = list(positive_examples.items())
p_df = pd.DataFrame(positive_tweets, columns=["Tweet", "Confidence"])
positive_table = p_df.to_html(index=False)
neutral_tweets = list(neutral_examples.items())
n_df = pd.DataFrame(neutral_tweets, columns=["Tweet", "Confidence"])
neutral_table = n_df.to_html(index=False)
negative_tweets = list(negative_examples.items())
neg_df = pd.DataFrame(negative_tweets, columns=["Tweet", "Confidence"])
negative_table = neg_df.to_html(index=False)
html_content += f"<h2>Recent Positive Tweets</h2>" + positive_table
html_content += f"<h2>Recent Negative Tweets</h2>" + negative_table
return fig, html_content
iface = gr.Interface(fn=calculate_sentiment, inputs="text", outputs=["plot","html"])
iface.launch(debug=True)