DeID / app.py
srijaydeshpande's picture
Update app.py
067587e verified
raw
history blame
5.58 kB
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer
from tqdm import tqdm
import re
import gradio as gr
import os
import accelerate
import spaces
import subprocess
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
# from vllm import LLM, SamplingParams
# subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True)
# subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)
hf_hub_download(
repo_id="QuantFactory/Meta-Llama-3-8B-Instruct-GGUF",
filename="Meta-Llama-3-8B-Instruct.Q8_0.gguf",
local_dir = "./models"
)
# hf_hub_download(
# repo_id="bartowski/Meta-Llama-3-70B-Instruct-GGUF",
# filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
# local_dir = "./models"
# )
def process_document(pdf_path, page_ids=None):
extracted_pages = extract_pages(pdf_path, page_numbers=page_ids)
page2content = {}
for extracted_page in tqdm(extracted_pages):
page_id = extracted_page.pageid
content = process_page(extracted_page)
page2content[page_id] = content
return page2content
def process_page(extracted_page):
content = []
elements = [element for element in extracted_page._objs]
elements.sort(key=lambda a: a.y1, reverse=True)
for i, element in enumerate(elements):
if isinstance(element, LTTextContainer):
line_text = extract_text_and_normalize(element)
content.append(line_text)
content = re.sub('\n+', ' ', ''.join(content))
return content
def extract_text_and_normalize(element):
# Extract text from line and split it with new lines
line_texts = element.get_text().split('\n')
norm_text = ''
for line_text in line_texts:
line_text = line_text.strip()
if not line_text:
line_text = '\n'
else:
line_text = re.sub('\s+', ' ', line_text)
if not re.search('[\w\d\,\-]', line_text[-1]):
line_text += '\n'
else:
line_text += ' '
norm_text += line_text
return norm_text
def txt_to_html(text):
html_content = "<html><body>"
for line in text.split('\n'):
html_content += "<p>{}</p>".format(line.strip())
html_content += "</body></html>"
return html_content
@spaces.GPU(duration=120)
def deidentify_doc(pdftext, maxtokens, temperature, top_probability):
prompt = "In the following text replace any person name and any address with term [redacted], replace any Date of Birth and NHS number with term [redacted]. Output the modified text."
llm = Llama(
model_path="models/Meta-Llama-3-8B-Instruct.Q8_0.gguf",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
output = llm.create_chat_completion(
messages=[
{"role": "assistant", "content": prompt},
{
"role": "user",
"content": pdftext
}
],
max_tokens=maxtokens,
temperature=temperature
)
output = output['choices'][0]['message']['content']
prompt = "Perform the following actions on given text: 1. Replace any person age with term [redacted] 2. DO NOT REPLACE ANY MEDICAL MEASUREMENTS 3. Replace only the CALENDAR DATES of format 'day/month/year' with term [redacted]. Output the modified text."
output = llm.create_chat_completion(
messages=[
{"role": "assistant", "content": prompt},
{
"role": "user",
"content": output
}
],
max_tokens=maxtokens,
temperature=temperature
)
output = output['choices'][0]['message']['content']
return output
def pdf_to_text(files, maxtokens=2048, temperature=0, top_probability=0.95):
files=[files]
for file in files:
if not file:
return 'Please provide a valid PDF'
file_name = os.path.basename(file)
file_name_splt = file_name.split('.')
if (len(file_name_splt) > 1 and file_name_splt[1] == 'pdf'):
page2content = process_document(file, page_ids=[0])
pdftext = page2content[1]
if (pdftext): #shift this if block to right later
anonymized_text = deidentify_doc(pdftext, maxtokens, temperature, top_probability)
else:
anonymized_text = 'PDF file appears to be corrupted.'
return anonymized_text
css = ".gradio-container {background: 'logo.png'}"
temp_slider = gr.Slider(minimum=0, maximum=2, value=0.9, label="Temperature Value")
prob_slider = gr.Slider(minimum=0, maximum=1, value=0.95, label="Max Probability Value")
max_tokens = gr.Number(value=600, label="Max Tokens")
input_folder = gr.File(file_count='multiple')
input_folder_text = gr.Textbox(label='Enter output folder path')
output_text = gr.Textbox()
output_path_component = gr.File(label="Select Output Path")
iface = gr.Interface(
fn=pdf_to_text,
inputs=['file'],
# css = css,
outputs=output_text,
title='DeID: Endoscopy Report De-Identification',
description="This application assists to remove personal information from the uploaded clinical report",
theme=gr.themes.Soft(),
)
iface.launch()