Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import gradio as gr | |
import pytube as pt | |
from speechbox import ASRDiarizationPipeline | |
from huggingface_hub import login | |
MODEL_NAME = "openai/whisper-small" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
pipe = ASRDiarizationPipeline.from_pretrained( | |
asr_model=MODEL_NAME, | |
device=device, | |
use_auth_token=HF_TOKEN, | |
) | |
def tuple_to_string(start_end_tuple, ndigits=1): | |
return str((round(start_end_tuple[0], ndigits), round(start_end_tuple[1], ndigits))) | |
def format_as_transcription(raw_segments, with_timestamps=False): | |
if with_timestamps: | |
return "\n\n".join([chunk["speaker"] + " " + tuple_to_string(chunk["timestamp"]) + chunk["text"] for chunk in raw_segments]) | |
else: | |
return "\n\n".join([chunk["speaker"] + chunk["text"] for chunk in raw_segments]) | |
def transcribe(file_upload, with_timestamps): | |
if file_upload is None: | |
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") | |
raw_segments = pipe(file_upload) | |
transcription = format_as_transcription(raw_segments, with_timestamps=with_timestamps) | |
return transcription | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url, with_timestamps): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
stream.download(filename="audio.mp3") | |
text = pipe("audio.mp3") | |
return html_embed_str, format_as_transcription(text, with_timestamps=with_timestamps) | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type="filepath"), | |
gr.Checkbox(label="With timestamps?", value=True), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Speaker Diarization: Transcribe Audio", | |
description=( | |
"Transcribe audio files with speaker diarization using [🤗 Speechbox](https://github.com/huggingface/speechbox/). " | |
"Demo uses the pre-trained checkpoint [Whisper Small](https://huggingface.co/openai/whisper-small) for the ASR " | |
"transcriptions and [pyannote.audio](https://huggingface.co/pyannote/speaker-diarization) to label the speakers." | |
"\n\n" | |
"Check out the repo here: https://github.com/huggingface/speechbox/" | |
), | |
#examples=[ | |
# ["./processed.wav", True], | |
# ["./processed.wav", False], | |
#], | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.Checkbox(label="With timestamps?", value=True), | |
], | |
outputs=["html", "text"], | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Speaker Diarization: Transcribe YouTube", | |
description=( | |
"Transcribe YouTube videos with speaker diarization using [🤗 Speechbox](https://github.com/huggingface/speechbox/). " | |
"Demo uses the pre-trained checkpoint [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) for the ASR " | |
"transcriptions and [pyannote.audio](https://huggingface.co/pyannote/speaker-diarization) to label the speakers." | |
"\n\n" | |
"Check out the repo here: https://github.com/huggingface/speechbox/" | |
), | |
examples=[ | |
["https://www.youtube.com/watch?v=9dAWIPixYxc", True], | |
["https://www.youtube.com/watch?v=9dAWIPixYxc", False], | |
], | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
demo.launch(enable_queue=True) | |