Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,33 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Load your Hugging Face model and tokenizer
|
8 |
model_name = "soufyane/gemma_data_science"
|
9 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
|
|
|
|
12 |
def process_text_gemma(input_text):
|
13 |
-
|
14 |
-
output_ids = model.generate(input_ids)
|
15 |
-
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
16 |
return response
|
17 |
|
18 |
-
def process_speech_gemma(audio):
|
19 |
-
response = process_text_gemma(audio)
|
20 |
-
tts = gTTS(text=response, lang='en')
|
21 |
-
fp = BytesIO()
|
22 |
-
tts.write_to_fp(fp)
|
23 |
-
fp.seek(0)
|
24 |
-
return ipd.Audio(fp.read(), autoplay=True)
|
25 |
|
26 |
def main(input_text):
|
27 |
-
return process_text_gemma(input_text[0])
|
28 |
|
29 |
gr.Interface(
|
30 |
fn=main,
|
31 |
inputs=["text"],
|
32 |
-
outputs=["text"
|
33 |
title="Gemma Data Science Model",
|
34 |
description="This is a text-to-text model for data science tasks.",
|
35 |
live=True
|
|
|
1 |
+
import keras_nlp
|
2 |
+
from keras_nlp.models import GemmaCausalLM
|
3 |
+
import warnings
|
4 |
+
warnings.filterwarnings('ignore')
|
5 |
+
import os
|
6 |
+
|
7 |
+
#set the envirenment
|
8 |
+
os.environ["KERAS_BACKEND"] = "jax" # Or "torch" or "tensorflow".
|
9 |
+
|
10 |
+
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00"
|
11 |
|
12 |
# Load your Hugging Face model and tokenizer
|
13 |
model_name = "soufyane/gemma_data_science"
|
14 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
|
17 |
+
model = keras_nlp.models.CausalLM.from_preset(f"hf://soufyane/gemma_data_science")
|
18 |
+
|
19 |
def process_text_gemma(input_text):
|
20 |
+
response = model.generate(f"question: {input_text}", max_length=256)
|
|
|
|
|
21 |
return response
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def main(input_text):
|
25 |
+
return process_text_gemma(input_text[0])
|
26 |
|
27 |
gr.Interface(
|
28 |
fn=main,
|
29 |
inputs=["text"],
|
30 |
+
outputs=["text"],
|
31 |
title="Gemma Data Science Model",
|
32 |
description="This is a text-to-text model for data science tasks.",
|
33 |
live=True
|