sonic314 commited on
Commit
6965158
1 Parent(s): 48d77c5

Support very small models on CPU

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -4,6 +4,15 @@ from transformer_ranker import TransformerRanker, prepare_popular_models
4
 
5
  st.title("Choose Your Transformer")
6
 
 
 
 
 
 
 
 
 
 
7
  # 1) Select dataset names (from text classification or token classification subcategory)
8
  dataset_options = ['trec', 'conll2003'] # Example datasets; you can expand this list
9
  selected_dataset = st.selectbox("Select Dataset", dataset_options)
@@ -13,9 +22,9 @@ downsample_values = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
13
  downsample_ratio = st.select_slider("Dataset Downsample Ratio", options=downsample_values, value=0.2)
14
 
15
  # 3) Select multiple models from HuggingFace model hub
16
- model_options = ['prajjwal1/bert-tiny', 'google/electra-small-discriminator', 'microsoft/deberta-v3-small',
17
- 'bert-base-uncased', 'bert-base-cased', 'distilbert-base-uncased', 'roberta-base'] # List of models
18
- selected_models = st.multiselect("Select Models", model_options, default=model_options[:1])
19
 
20
  # 4) Select the parameter for layer selection with layermean as the default
21
  layer_options = ['lastlayer', 'layermean', 'bestlayer']
 
4
 
5
  st.title("Choose Your Transformer")
6
 
7
+ model_options = {
8
+ 'bert-tiny': 'prajjwal1/bert-tiny',
9
+ 'bert-small': 'prajjwal1/bert-small',
10
+ 'electra-small': 'google/electra-small-discriminator',
11
+ 'deberta-small': 'microsoft/deberta-v3-small',
12
+ 'distilbert-cased': 'distilbert-base-cased',
13
+ 'distilbert-uncased': 'distilbert-base-uncased',
14
+ }
15
+
16
  # 1) Select dataset names (from text classification or token classification subcategory)
17
  dataset_options = ['trec', 'conll2003'] # Example datasets; you can expand this list
18
  selected_dataset = st.selectbox("Select Dataset", dataset_options)
 
22
  downsample_ratio = st.select_slider("Dataset Downsample Ratio", options=downsample_values, value=0.2)
23
 
24
  # 3) Select multiple models from HuggingFace model hub
25
+ model_names = list(model_options.keys())
26
+ selected_models = st.multiselect("Select Models", model_names, default=['bert-tiny', 'electra-small'])
27
+ selected_models = [model_options[model_name] for model_name in selected_models]
28
 
29
  # 4) Select the parameter for layer selection with layermean as the default
30
  layer_options = ['lastlayer', 'layermean', 'bestlayer']