runs on mac but generation is wrong
Browse files- app.py +263 -0
- pipeline.py +486 -0
- pup1.jpg +0 -0
- pup2.jpg +0 -0
- pup3.jpg +0 -0
- pup4.jpeg +0 -0
- pup5.jpg +0 -0
- requirements.txt +8 -0
- test-platform.py +8 -0
app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionImageVariationPipeline, DiffusionPipeline
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import math
|
9 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
10 |
+
|
11 |
+
# model_id = "stabilityai/stable-diffusion-2-1-base"
|
12 |
+
# text_model_id = "CompVis/stable-diffusion-v-1-4-original"
|
13 |
+
# text_model_id = "CompVis/stable-diffusion-v1-4"
|
14 |
+
text_model_id = "runwayml/stable-diffusion-v1-5"
|
15 |
+
# text_model_id = "stabilityai/stable-diffusion-2-1-base"
|
16 |
+
model_id = "lambdalabs/sd-image-variations-diffusers"
|
17 |
+
clip_model_id = "openai/clip-vit-large-patch14-336"
|
18 |
+
|
19 |
+
max_tabs = 5
|
20 |
+
input_images = [None for i in range(max_tabs)]
|
21 |
+
input_prompts = [None for i in range(max_tabs)]
|
22 |
+
embedding_plots = [None for i in range(max_tabs)]
|
23 |
+
# global embedding_base64s
|
24 |
+
embedding_base64s = [None for i in range(max_tabs)]
|
25 |
+
# embedding_base64s = gr.State(value=[None for i in range(max_tabs)])
|
26 |
+
|
27 |
+
|
28 |
+
def image_to_embedding(input_im):
|
29 |
+
tform = transforms.Compose([
|
30 |
+
transforms.ToTensor(),
|
31 |
+
transforms.Resize(
|
32 |
+
(224, 224),
|
33 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
34 |
+
antialias=False,
|
35 |
+
),
|
36 |
+
transforms.Normalize(
|
37 |
+
[0.48145466, 0.4578275, 0.40821073],
|
38 |
+
[0.26862954, 0.26130258, 0.27577711]),
|
39 |
+
])
|
40 |
+
|
41 |
+
inp = tform(input_im).to(device)
|
42 |
+
dtype = next(pipe.image_encoder.parameters()).dtype
|
43 |
+
image = inp.tile(1, 1, 1, 1).to(device=device, dtype=dtype)
|
44 |
+
image_embeddings = pipe.image_encoder(image).image_embeds
|
45 |
+
image_embeddings = image_embeddings[0]
|
46 |
+
image_embeddings_np = image_embeddings.cpu().detach().numpy()
|
47 |
+
return image_embeddings_np
|
48 |
+
|
49 |
+
def prompt_to_embedding(prompt):
|
50 |
+
# inputs = processor(prompt, images=imgs, return_tensors="pt", padding=True)
|
51 |
+
inputs = processor(prompt, return_tensors="pt", padding='max_length', max_length=77)
|
52 |
+
# labels = torch.tensor(labels)
|
53 |
+
# prompt_tokens = inputs.input_ids[0]
|
54 |
+
prompt_tokens = inputs.input_ids
|
55 |
+
# image = inputs.pixel_values
|
56 |
+
with torch.no_grad():
|
57 |
+
prompt_embededdings = model.get_text_features(prompt_tokens.to(device))
|
58 |
+
prompt_embededdings = prompt_embededdings[0].cpu().detach().numpy()
|
59 |
+
return prompt_embededdings
|
60 |
+
|
61 |
+
def embedding_to_image(embeddings):
|
62 |
+
size = math.ceil(math.sqrt(embeddings.shape[0]))
|
63 |
+
image_embeddings_square = np.pad(embeddings, (0, size**2 - embeddings.shape[0]), 'constant')
|
64 |
+
image_embeddings_square.resize(size,size)
|
65 |
+
embedding_image = Image.fromarray(image_embeddings_square, mode="L")
|
66 |
+
return embedding_image
|
67 |
+
|
68 |
+
def embedding_to_base64(embeddings):
|
69 |
+
import base64
|
70 |
+
# ensure float16
|
71 |
+
embeddings = embeddings.astype(np.float16)
|
72 |
+
embeddings_b64 = base64.urlsafe_b64encode(embeddings).decode()
|
73 |
+
return embeddings_b64
|
74 |
+
|
75 |
+
def base64_to_embedding(embeddings_b64):
|
76 |
+
import base64
|
77 |
+
embeddings = base64.urlsafe_b64decode(embeddings_b64)
|
78 |
+
embeddings = np.frombuffer(embeddings, dtype=np.float16)
|
79 |
+
# embeddings = torch.tensor(embeddings)
|
80 |
+
return embeddings
|
81 |
+
|
82 |
+
def main(
|
83 |
+
# input_im,
|
84 |
+
embeddings,
|
85 |
+
scale=3.0,
|
86 |
+
n_samples=4,
|
87 |
+
steps=25,
|
88 |
+
seed=0
|
89 |
+
):
|
90 |
+
|
91 |
+
if seed == None:
|
92 |
+
seed = np.random.randint(2147483647)
|
93 |
+
# generator = torch.Generator(device=device).manual_seed(int(seed))
|
94 |
+
generator = torch.Generator().manual_seed(int(seed)) # use cpu as does not work on mps
|
95 |
+
|
96 |
+
embeddings = base64_to_embedding(embeddings)
|
97 |
+
embeddings = torch.tensor(embeddings).to(device)
|
98 |
+
|
99 |
+
images_list = pipe(
|
100 |
+
# inp.tile(n_samples, 1, 1, 1),
|
101 |
+
# [embeddings * n_samples],
|
102 |
+
embeddings,
|
103 |
+
guidance_scale=scale,
|
104 |
+
num_inference_steps=steps,
|
105 |
+
generator=generator,
|
106 |
+
)
|
107 |
+
|
108 |
+
images = []
|
109 |
+
for i, image in enumerate(images_list["images"]):
|
110 |
+
images.append(image)
|
111 |
+
# images.append(embedding_image)
|
112 |
+
return images
|
113 |
+
|
114 |
+
def on_image_load_update_embeddings(image_data):
|
115 |
+
# image to embeddings
|
116 |
+
if image_data is None:
|
117 |
+
embeddings = prompt_to_embedding('')
|
118 |
+
embeddings_b64 = embedding_to_base64(embeddings)
|
119 |
+
return gr.Text.update(embeddings_b64)
|
120 |
+
embeddings = image_to_embedding(image_data)
|
121 |
+
embeddings_b64 = embedding_to_base64(embeddings)
|
122 |
+
return gr.Text.update(embeddings_b64)
|
123 |
+
|
124 |
+
def on_prompt_change_update_embeddings(prompt):
|
125 |
+
# prompt to embeddings
|
126 |
+
if prompt is None or prompt == "":
|
127 |
+
embeddings = prompt_to_embedding('')
|
128 |
+
embeddings_b64 = embedding_to_base64(embeddings)
|
129 |
+
return gr.Text.update(embedding_to_base64(embeddings))
|
130 |
+
embeddings = prompt_to_embedding(prompt)
|
131 |
+
embeddings_b64 = embedding_to_base64(embeddings)
|
132 |
+
return gr.Text.update(embeddings_b64)
|
133 |
+
|
134 |
+
# def on_embeddings_changed_update_average_embeddings(last_embedding_base64):
|
135 |
+
# def on_embeddings_changed_update_average_embeddings(embedding_base64s):
|
136 |
+
def on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_base64, idx):
|
137 |
+
# global embedding_base64s
|
138 |
+
final_embedding = None
|
139 |
+
num_embeddings = 0
|
140 |
+
embedding_base64s_state[idx] = embedding_base64
|
141 |
+
# for textbox in embedding_base64s:
|
142 |
+
# embedding_base64 = textbox.value
|
143 |
+
for embedding_base64 in embedding_base64s_state:
|
144 |
+
if embedding_base64 is None or embedding_base64 == "":
|
145 |
+
continue
|
146 |
+
embedding = base64_to_embedding(embedding_base64)
|
147 |
+
if final_embedding is None:
|
148 |
+
final_embedding = embedding
|
149 |
+
else:
|
150 |
+
final_embedding = final_embedding + embedding
|
151 |
+
num_embeddings += 1
|
152 |
+
if final_embedding is None:
|
153 |
+
embeddings = prompt_to_embedding('')
|
154 |
+
embeddings_b64 = embedding_to_base64(embeddings)
|
155 |
+
return gr.Text.update(embeddings_b64)
|
156 |
+
final_embedding = final_embedding / num_embeddings
|
157 |
+
embeddings_b64 = embedding_to_base64(final_embedding)
|
158 |
+
return gr.Text.update(embeddings_b64)
|
159 |
+
|
160 |
+
def on_embeddings_changed_update_plot(embeddings_b64):
|
161 |
+
# plot new embeddings
|
162 |
+
if embeddings_b64 is None or embeddings_b64 == "":
|
163 |
+
return gr.LinePlot.update()
|
164 |
+
|
165 |
+
embeddings = base64_to_embedding(embeddings_b64)
|
166 |
+
data = pd.DataFrame({
|
167 |
+
'embedding': embeddings,
|
168 |
+
'index': [n for n in range(len(embeddings))]})
|
169 |
+
return gr.LinePlot.update(data,
|
170 |
+
x="index",
|
171 |
+
y="embedding",
|
172 |
+
# color="country",
|
173 |
+
title="Embeddings",
|
174 |
+
# stroke_dash="cluster",
|
175 |
+
# x_lim=[1950, 2010],
|
176 |
+
tooltip=['index', 'embedding'],
|
177 |
+
# stroke_dash_legend_title="Country Cluster",
|
178 |
+
# height=300,
|
179 |
+
width=embeddings.shape[0])
|
180 |
+
|
181 |
+
|
182 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda:0" if torch.cuda.is_available() else "cpu")
|
183 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
184 |
+
model_id,
|
185 |
+
custom_pipeline="pipeline.py",
|
186 |
+
torch_dtype=torch.float16,
|
187 |
+
# , revision="fp16",
|
188 |
+
requires_safety_checker = False, safety_checker=None,
|
189 |
+
text_encoder = CLIPTextModel,
|
190 |
+
tokenizer = CLIPTokenizer,
|
191 |
+
)
|
192 |
+
pipe = pipe.to(device)
|
193 |
+
|
194 |
+
from transformers import AutoProcessor, AutoModel
|
195 |
+
processor = AutoProcessor.from_pretrained(clip_model_id)
|
196 |
+
model = AutoModel.from_pretrained(clip_model_id)
|
197 |
+
model = model.to(device)
|
198 |
+
|
199 |
+
examples = [
|
200 |
+
["frog.png", 3, 1, 25, 0],
|
201 |
+
["img0.jpg", 3, 1, 25, 0],
|
202 |
+
["img1.jpg", 3, 1, 25, 0],
|
203 |
+
["img2.jpg", 3, 1, 25, 0],
|
204 |
+
["img3.jpg", 3, 1, 25, 0],
|
205 |
+
]
|
206 |
+
|
207 |
+
|
208 |
+
with gr.Blocks() as demo:
|
209 |
+
with gr.Row():
|
210 |
+
for i in range(max_tabs):
|
211 |
+
with gr.Tab(f"Input {i}"):
|
212 |
+
with gr.Row():
|
213 |
+
with gr.Column(scale=1, min_width=240):
|
214 |
+
input_images[i] = gr.Image()
|
215 |
+
with gr.Column(scale=3, min_width=600):
|
216 |
+
embedding_plots[i] = gr.LinePlot(show_label=False).style(container=False)
|
217 |
+
# input_image.change(on_image_load, inputs= [input_image, plot])
|
218 |
+
with gr.Row():
|
219 |
+
with gr.Column(scale=1, min_width=240):
|
220 |
+
input_prompts[i] = gr.Textbox()
|
221 |
+
with gr.Column(scale=3, min_width=600):
|
222 |
+
with gr.Accordion("Embeddings", open=False):
|
223 |
+
embedding_base64s[i] = gr.Textbox(show_label=False)
|
224 |
+
|
225 |
+
with gr.Row():
|
226 |
+
average_embedding_plot = gr.LinePlot(show_label=False).style(container=False)
|
227 |
+
with gr.Row():
|
228 |
+
average_embedding_base64 = gr.Textbox(show_label=False)
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column(scale=1, min_width=200):
|
232 |
+
scale = gr.Slider(0, 25, value=3, step=1, label="Guidance scale")
|
233 |
+
with gr.Column(scale=1, min_width=200):
|
234 |
+
n_samples = gr.Slider(1, 4, value=1, step=1, label="Number images")
|
235 |
+
with gr.Column(scale=1, min_width=200):
|
236 |
+
steps = gr.Slider(5, 50, value=25, step=5, label="Steps")
|
237 |
+
with gr.Column(scale=1, min_width=200):
|
238 |
+
seed = gr.Number(None, label="Seed", precision=0)
|
239 |
+
with gr.Row():
|
240 |
+
submit = gr.Button("Submit")
|
241 |
+
with gr.Row():
|
242 |
+
output = gr.Gallery(label="Generated variations")
|
243 |
+
|
244 |
+
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
|
245 |
+
for i in range(max_tabs):
|
246 |
+
input_images[i].change(on_image_load_update_embeddings, input_images[i], [embedding_base64s[i]])
|
247 |
+
input_prompts[i].submit(on_prompt_change_update_embeddings, input_prompts[i], [embedding_base64s[i]])
|
248 |
+
embedding_base64s[i].change(on_embeddings_changed_update_plot, embedding_base64s[i], [embedding_plots[i]])
|
249 |
+
# embedding_plots[i].change(on_plot_changed, embedding_base64s[i], average_embedding_base64)
|
250 |
+
# embedding_plots[i].change(on_embeddings_changed_update_average_embeddings, embedding_base64s[i], average_embedding_base64)
|
251 |
+
idx_state = gr.State(value=i)
|
252 |
+
embedding_base64s[i].change(on_embeddings_changed_update_average_embeddings, [embedding_base64s_state, embedding_base64s[i], idx_state], average_embedding_base64)
|
253 |
+
|
254 |
+
average_embedding_base64.change(on_embeddings_changed_update_plot, average_embedding_base64, average_embedding_plot)
|
255 |
+
|
256 |
+
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
|
257 |
+
submit.click(main, inputs= [average_embedding_base64, scale, n_samples, steps, seed], outputs=output)
|
258 |
+
output.style(grid=2)
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
demo.launch()
|
pipeline.py
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Callable, List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
import PIL
|
21 |
+
from diffusers.utils import is_accelerate_available
|
22 |
+
from packaging import version
|
23 |
+
from transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection
|
24 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
25 |
+
|
26 |
+
# from ...configuration_utils import FrozenDict
|
27 |
+
# from ...models import AutoencoderKL, UNet2DConditionModel
|
28 |
+
# from ...pipeline_utils import DiffusionPipeline
|
29 |
+
# from ...schedulers import (
|
30 |
+
# DDIMScheduler,
|
31 |
+
# DPMSolverMultistepScheduler,
|
32 |
+
# EulerAncestralDiscreteScheduler,
|
33 |
+
# EulerDiscreteScheduler,
|
34 |
+
# LMSDiscreteScheduler,
|
35 |
+
# PNDMScheduler,
|
36 |
+
# )
|
37 |
+
# from ...utils import deprecate, logging
|
38 |
+
# from . import StableDiffusionPipelineOutput
|
39 |
+
# from .safety_checker import StableDiffusionSafetyChecker
|
40 |
+
from diffusers.configuration_utils import FrozenDict
|
41 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
42 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
43 |
+
from diffusers.schedulers import (
|
44 |
+
DDIMScheduler,
|
45 |
+
DPMSolverMultistepScheduler,
|
46 |
+
EulerAncestralDiscreteScheduler,
|
47 |
+
EulerDiscreteScheduler,
|
48 |
+
LMSDiscreteScheduler,
|
49 |
+
PNDMScheduler,
|
50 |
+
)
|
51 |
+
from diffusers.utils import deprecate, logging
|
52 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
|
58 |
+
class StableDiffusionImageTextVariationPipeline(DiffusionPipeline):
|
59 |
+
r"""
|
60 |
+
Pipeline to generate variations from an input image using Stable Diffusion.
|
61 |
+
|
62 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
63 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
64 |
+
|
65 |
+
Args:
|
66 |
+
vae ([`AutoencoderKL`]):
|
67 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
68 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
69 |
+
Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
|
70 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
|
71 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
72 |
+
text_encoder ([`CLIPTextModel`]):
|
73 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
74 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
75 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
76 |
+
tokenizer (`CLIPTokenizer`):
|
77 |
+
Tokenizer of class
|
78 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
79 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
80 |
+
scheduler ([`SchedulerMixin`]):
|
81 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
82 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
83 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
84 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
85 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
86 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
87 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
88 |
+
"""
|
89 |
+
_optional_components = ["safety_checker"]
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
vae: AutoencoderKL,
|
94 |
+
image_encoder: CLIPVisionModelWithProjection,
|
95 |
+
text_encoder: CLIPTextModel,
|
96 |
+
tokenizer: CLIPTokenizer,
|
97 |
+
unet: UNet2DConditionModel,
|
98 |
+
scheduler: Union[
|
99 |
+
DDIMScheduler,
|
100 |
+
PNDMScheduler,
|
101 |
+
LMSDiscreteScheduler,
|
102 |
+
EulerDiscreteScheduler,
|
103 |
+
EulerAncestralDiscreteScheduler,
|
104 |
+
DPMSolverMultistepScheduler,
|
105 |
+
],
|
106 |
+
safety_checker: StableDiffusionSafetyChecker,
|
107 |
+
feature_extractor: CLIPFeatureExtractor,
|
108 |
+
requires_safety_checker: bool = True,
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
|
112 |
+
if safety_checker is None and requires_safety_checker:
|
113 |
+
logger.warn(
|
114 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
115 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
116 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
117 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
118 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
119 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
120 |
+
)
|
121 |
+
|
122 |
+
if safety_checker is not None and feature_extractor is None:
|
123 |
+
raise ValueError(
|
124 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
125 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
126 |
+
)
|
127 |
+
|
128 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
129 |
+
version.parse(unet.config._diffusers_version).base_version
|
130 |
+
) < version.parse("0.9.0.dev0")
|
131 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
132 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
133 |
+
deprecation_message = (
|
134 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
135 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
136 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
137 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
138 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
139 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
140 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
141 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
142 |
+
" the `unet/config.json` file"
|
143 |
+
)
|
144 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
145 |
+
new_config = dict(unet.config)
|
146 |
+
new_config["sample_size"] = 64
|
147 |
+
unet._internal_dict = FrozenDict(new_config)
|
148 |
+
|
149 |
+
self.register_modules(
|
150 |
+
vae=vae,
|
151 |
+
image_encoder=image_encoder,
|
152 |
+
text_encoder=text_encoder,
|
153 |
+
tokenizer=tokenizer,
|
154 |
+
unet=unet,
|
155 |
+
scheduler=scheduler,
|
156 |
+
safety_checker=safety_checker,
|
157 |
+
feature_extractor=feature_extractor,
|
158 |
+
)
|
159 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
160 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
161 |
+
|
162 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
163 |
+
r"""
|
164 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
165 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
166 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
167 |
+
"""
|
168 |
+
if is_accelerate_available():
|
169 |
+
from accelerate import cpu_offload
|
170 |
+
else:
|
171 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
172 |
+
|
173 |
+
device = torch.device(f"cuda:{gpu_id}")
|
174 |
+
|
175 |
+
for cpu_offloaded_model in [self.unet, self.image_encoder, self.vae, self.safety_checker]:
|
176 |
+
if cpu_offloaded_model is not None:
|
177 |
+
cpu_offload(cpu_offloaded_model, device)
|
178 |
+
|
179 |
+
@property
|
180 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
181 |
+
def _execution_device(self):
|
182 |
+
r"""
|
183 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
184 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
185 |
+
hooks.
|
186 |
+
"""
|
187 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
188 |
+
return self.device
|
189 |
+
for module in self.unet.modules():
|
190 |
+
if (
|
191 |
+
hasattr(module, "_hf_hook")
|
192 |
+
and hasattr(module._hf_hook, "execution_device")
|
193 |
+
and module._hf_hook.execution_device is not None
|
194 |
+
):
|
195 |
+
return torch.device(module._hf_hook.execution_device)
|
196 |
+
return self.device
|
197 |
+
|
198 |
+
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
|
199 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
200 |
+
|
201 |
+
if not isinstance(image, torch.Tensor):
|
202 |
+
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values
|
203 |
+
|
204 |
+
image = image.to(device=device, dtype=dtype)
|
205 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
206 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
207 |
+
|
208 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
209 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
210 |
+
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
|
211 |
+
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
212 |
+
|
213 |
+
if do_classifier_free_guidance:
|
214 |
+
uncond_embeddings = torch.zeros_like(image_embeddings)
|
215 |
+
|
216 |
+
# For classifier free guidance, we need to do two forward passes.
|
217 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
218 |
+
# to avoid doing two forward passes
|
219 |
+
image_embeddings = torch.cat([uncond_embeddings, image_embeddings])
|
220 |
+
|
221 |
+
return image_embeddings
|
222 |
+
|
223 |
+
def _prepare_embeddings(self, embeddings, device, num_images_per_prompt, do_classifier_free_guidance):
|
224 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
225 |
+
|
226 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
227 |
+
# bs_embed, seq_len, _ = embeddings.shape
|
228 |
+
# bs_embed = len(embeddings)
|
229 |
+
# seq_len = embeddings[0].shape[0]
|
230 |
+
# embeddings = embeddings.repeat(1, num_images_per_prompt, 1)
|
231 |
+
embeddings = embeddings.repeat(1, 1, num_images_per_prompt)
|
232 |
+
# embeddings = embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
233 |
+
|
234 |
+
if do_classifier_free_guidance:
|
235 |
+
uncond_embeddings = torch.zeros_like(embeddings)
|
236 |
+
|
237 |
+
# For classifier free guidance, we need to do two forward passes.
|
238 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
239 |
+
# to avoid doing two forward passes
|
240 |
+
embeddings = torch.cat([uncond_embeddings, embeddings])
|
241 |
+
|
242 |
+
return embeddings
|
243 |
+
|
244 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
245 |
+
def run_safety_checker(self, image, device, dtype):
|
246 |
+
if self.safety_checker is not None:
|
247 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
248 |
+
image, has_nsfw_concept = self.safety_checker(
|
249 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
has_nsfw_concept = None
|
253 |
+
return image, has_nsfw_concept
|
254 |
+
|
255 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
256 |
+
def decode_latents(self, latents):
|
257 |
+
latents = 1 / 0.18215 * latents
|
258 |
+
image = self.vae.decode(latents).sample
|
259 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
260 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
261 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
262 |
+
return image
|
263 |
+
|
264 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
265 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
266 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
267 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
268 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
269 |
+
# and should be between [0, 1]
|
270 |
+
|
271 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
272 |
+
extra_step_kwargs = {}
|
273 |
+
if accepts_eta:
|
274 |
+
extra_step_kwargs["eta"] = eta
|
275 |
+
|
276 |
+
# check if the scheduler accepts generator
|
277 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
278 |
+
if accepts_generator:
|
279 |
+
extra_step_kwargs["generator"] = generator
|
280 |
+
return extra_step_kwargs
|
281 |
+
|
282 |
+
def check_inputs(self, image, height, width, callback_steps):
|
283 |
+
if (
|
284 |
+
not isinstance(image, torch.Tensor)
|
285 |
+
and not isinstance(image, PIL.Image.Image)
|
286 |
+
and not isinstance(image, list)
|
287 |
+
):
|
288 |
+
raise ValueError(
|
289 |
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
290 |
+
f" {type(image)}"
|
291 |
+
)
|
292 |
+
|
293 |
+
if height % 8 != 0 or width % 8 != 0:
|
294 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
295 |
+
|
296 |
+
if (callback_steps is None) or (
|
297 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
298 |
+
):
|
299 |
+
raise ValueError(
|
300 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
301 |
+
f" {type(callback_steps)}."
|
302 |
+
)
|
303 |
+
|
304 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
305 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
306 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
307 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
308 |
+
raise ValueError(
|
309 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
310 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
311 |
+
)
|
312 |
+
|
313 |
+
if latents is None:
|
314 |
+
rand_device = "cpu" if device.type == "mps" else device
|
315 |
+
|
316 |
+
if isinstance(generator, list):
|
317 |
+
shape = (1,) + shape[1:]
|
318 |
+
latents = [
|
319 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
320 |
+
for i in range(batch_size)
|
321 |
+
]
|
322 |
+
latents = torch.cat(latents, dim=0).to(device)
|
323 |
+
else:
|
324 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
325 |
+
else:
|
326 |
+
if latents.shape != shape:
|
327 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
328 |
+
latents = latents.to(device)
|
329 |
+
|
330 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
331 |
+
latents = latents * self.scheduler.init_noise_sigma
|
332 |
+
return latents
|
333 |
+
|
334 |
+
@torch.no_grad()
|
335 |
+
def __call__(
|
336 |
+
self,
|
337 |
+
# image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
|
338 |
+
embeddings: torch.FloatTensor,
|
339 |
+
height: Optional[int] = None,
|
340 |
+
width: Optional[int] = None,
|
341 |
+
num_inference_steps: int = 50,
|
342 |
+
guidance_scale: float = 7.5,
|
343 |
+
num_images_per_prompt: Optional[int] = 1,
|
344 |
+
eta: float = 0.0,
|
345 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
346 |
+
latents: Optional[torch.FloatTensor] = None,
|
347 |
+
output_type: Optional[str] = "pil",
|
348 |
+
return_dict: bool = True,
|
349 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
350 |
+
callback_steps: Optional[int] = 1,
|
351 |
+
):
|
352 |
+
r"""
|
353 |
+
Function invoked when calling the pipeline for generation.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
357 |
+
The image or images to guide the image generation. If you provide a tensor, it needs to comply with the
|
358 |
+
configuration of
|
359 |
+
[this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
|
360 |
+
`CLIPFeatureExtractor`
|
361 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
362 |
+
The height in pixels of the generated image.
|
363 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
364 |
+
The width in pixels of the generated image.
|
365 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
366 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
367 |
+
expense of slower inference.
|
368 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
369 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
370 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
371 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
372 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
373 |
+
usually at the expense of lower image quality.
|
374 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
375 |
+
The number of images to generate per prompt.
|
376 |
+
eta (`float`, *optional*, defaults to 0.0):
|
377 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
378 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
379 |
+
generator (`torch.Generator`, *optional*):
|
380 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
381 |
+
to make generation deterministic.
|
382 |
+
latents (`torch.FloatTensor`, *optional*):
|
383 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
384 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
385 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
386 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
387 |
+
The output format of the generate image. Choose between
|
388 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
389 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
390 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
391 |
+
plain tuple.
|
392 |
+
callback (`Callable`, *optional*):
|
393 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
394 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
395 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
396 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
397 |
+
called at every step.
|
398 |
+
|
399 |
+
Returns:
|
400 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
401 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
402 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
403 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
404 |
+
(nsfw) content, according to the `safety_checker`.
|
405 |
+
"""
|
406 |
+
# 0. Default height and width to unet
|
407 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
408 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
409 |
+
|
410 |
+
# 1. Check inputs. Raise error if not correct
|
411 |
+
# self.check_inputs(image, height, width, callback_steps)
|
412 |
+
|
413 |
+
# 2. Define call parameters
|
414 |
+
if isinstance(embeddings, list):
|
415 |
+
batch_size = len(embeddings)
|
416 |
+
else:
|
417 |
+
batch_size = 1
|
418 |
+
device = self._execution_device
|
419 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
420 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
421 |
+
# corresponds to doing no classifier free guidance.
|
422 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
423 |
+
|
424 |
+
# 3. Encode input image
|
425 |
+
embeddings = self._prepare_embeddings(embeddings, device, num_images_per_prompt, do_classifier_free_guidance)
|
426 |
+
embeddings = embeddings.to(device)
|
427 |
+
|
428 |
+
# 4. Prepare timesteps
|
429 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
430 |
+
timesteps = self.scheduler.timesteps
|
431 |
+
|
432 |
+
# 5. Prepare latent variables
|
433 |
+
num_channels_latents = self.unet.in_channels
|
434 |
+
latents = self.prepare_latents(
|
435 |
+
batch_size * num_images_per_prompt,
|
436 |
+
num_channels_latents,
|
437 |
+
height,
|
438 |
+
width,
|
439 |
+
embeddings.dtype,
|
440 |
+
device,
|
441 |
+
generator,
|
442 |
+
latents,
|
443 |
+
)
|
444 |
+
|
445 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
446 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
447 |
+
|
448 |
+
# 7. Denoising loop
|
449 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
450 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
451 |
+
for i, t in enumerate(timesteps):
|
452 |
+
# expand the latents if we are doing classifier free guidance
|
453 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
454 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
455 |
+
|
456 |
+
# predict the noise residual
|
457 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=embeddings).sample
|
458 |
+
|
459 |
+
# perform guidance
|
460 |
+
if do_classifier_free_guidance:
|
461 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
462 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
463 |
+
|
464 |
+
# compute the previous noisy sample x_t -> x_t-1
|
465 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
466 |
+
|
467 |
+
# call the callback, if provided
|
468 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
469 |
+
progress_bar.update()
|
470 |
+
if callback is not None and i % callback_steps == 0:
|
471 |
+
callback(i, t, latents)
|
472 |
+
|
473 |
+
# 8. Post-processing
|
474 |
+
image = self.decode_latents(latents)
|
475 |
+
|
476 |
+
# 9. Run safety checker
|
477 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, embeddings.dtype)
|
478 |
+
|
479 |
+
# 10. Convert to PIL
|
480 |
+
if output_type == "pil":
|
481 |
+
image = self.numpy_to_pil(image)
|
482 |
+
|
483 |
+
if not return_dict:
|
484 |
+
return (image, has_nsfw_concept)
|
485 |
+
|
486 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
pup1.jpg
ADDED
pup2.jpg
ADDED
pup3.jpg
ADDED
pup4.jpeg
ADDED
pup5.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
numpy
|
4 |
+
transformers
|
5 |
+
diffusers
|
6 |
+
# ftfy
|
7 |
+
gradio
|
8 |
+
accelerate
|
test-platform.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
# set device to mps if avaliable, cude if avaliable, cpu otherwise
|
4 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda:0" if torch.cuda.is_available() else "cpu")
|
5 |
+
print (device)
|
6 |
+
|
7 |
+
x = torch.zeros(1, device=device)
|
8 |
+
print (str(x))
|