File size: 12,397 Bytes
5e01e13
ea06e5a
5e01e13
 
313342d
 
7adeb33
ea06e5a
190395c
 
 
 
 
 
4bceec3
 
fb9010f
 
 
 
 
 
376239d
 
 
190395c
 
 
 
 
 
 
 
 
 
 
 
 
 
dba8b67
376239d
6c4dec8
376239d
 
 
190395c
 
5e01e13
 
 
ea06e5a
5e01e13
 
 
 
 
 
7df4a81
cbc358c
 
7df4a81
cbc358c
7df4a81
cbc358c
 
7df4a81
 
 
 
0d44baa
 
7df4a81
 
cbc358c
 
7df4a81
2f582d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d44baa
7adeb33
 
 
7df4a81
0d44baa
 
cbc358c
0d44baa
 
 
 
cbc358c
0d44baa
cbc358c
0d44baa
 
 
 
cbc358c
7adeb33
 
7df4a81
5e01e13
be4f1b2
 
2f582d1
 
 
 
 
 
be4f1b2
 
5e01e13
 
997ca15
0d44baa
 
 
93330ce
2f582d1
 
 
 
 
 
 
 
 
 
 
313342d
0d44baa
 
 
 
 
 
3911108
7adeb33
313342d
7df4a81
0d44baa
 
 
 
 
 
7adeb33
313342d
7df4a81
0d44baa
 
 
 
 
 
 
 
 
 
 
2f582d1
0d44baa
 
 
 
 
 
 
2f582d1
 
0d44baa
7df4a81
5e01e13
602f686
190395c
 
fb9010f
190395c
 
7df4a81
0d44baa
 
 
 
 
 
 
602f686
be4f1b2
 
0d44baa
190395c
0d44baa
 
 
2f582d1
997ca15
2f582d1
 
 
313342d
93330ce
3911108
7df4a81
 
cacde98
7df4a81
 
 
0d44baa
c7632f4
7df4a81
2f582d1
 
 
 
0d44baa
 
 
 
eda017b
0d44baa
 
 
 
 
 
 
 
 
 
 
 
 
eda017b
0d44baa
 
 
 
 
eda017b
0d44baa
602f686
 
0d44baa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import json
import gradio as gr
import os
from PIL import Image
import plotly.graph_objects as go
import plotly.express as px
import operator

TITLE = "Identity Representation in Diffusion Models"

_INTRO = """
# Identity Representation in Diffusion Models

Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)!
This demo showcases patterns in images generated by Stable Diffusion and Dalle-2 systems.
Specifically, images obtained from prompt inputs that span various gender- and ethnicity-related terms are clustered to show how those shape visual representations (more details below).
We encourage users to take advantage of this app to explore those trends, for example through the lens of the following questions:
- Find the cluster that has the most prompts denoting a gender or ethnicity that you identify with. Do you think the generated images look like you?
- Find two clusters that have a similar distribution of gender terms but different distributions of ethnicity terms. Do you see any meaningful differences in how gender is visually represented?
- Do you find that some ethnicity terms lead to more stereotypical visual representations than others?
- Do you find that some gender terms lead to more stereotypical visual representations than others?

These questions only scratch the surface of what we can learn from demos like this one,
let us know what you find [in the discussions tab](https://huggingface.co/spaces/society-ethics/DiffusionFaceClustering/discussions),
or if you think of other relevant questions!
"""

_CONTEXT = """
##### How do diffusion-based models represent gender and ethnicity?

In order to evaluate the *social biases* that Text-to-Image (TTI) systems may reproduce or exacerbate,
we need to first understand how the visual representations they generate relate to notions of gender and ethnicity.
These two aspects of a person's identity, however, ar known as **socialy constructed characteristics**:
that is to say, gender and ethnicity only exist in interactions between people, they do not have an independent existence based solely on physical (or visual) attributes.
This means that while we can characterize trends in how the models associate visual features with specific *identity terms in the generation prompts*,
we should not assign a specific gender or ethnicity to a synthetic figure generated by an ML model.

In this app, we instead take a 2-step clustering-based approach. First, we generate 680 images for each model by varying mentions of terms that denote gender or ethnicity in the prompts.
Then, we use a [VQA-based model](https://huggingface.co/Salesforce/blip-vqa-base) to cluster these images at different granularities (12, 24, or 48 clusters).
Exploring these clusters allows us to examine trends in the models' associations between visual features and textual representation of social attributes.

**Note:** this demo was developed with a limited set of gender- and ethnicity-related terms that are more relevant to the US context as a first approach,
so users may not always find themselves represented.
If you have suggestions for additional categories you would particularly like to see in the next version,
please tell us about them [in the discussions tab](https://huggingface.co/spaces/society-ethics/DiffusionFaceClustering/discussions)!
"""

clusters_12 = json.load(open("clusters/id_all_blip_clusters_12.json"))
clusters_24 = json.load(open("clusters/id_all_blip_clusters_24.json"))
clusters_48 = json.load(open("clusters/id_all_blip_clusters_48.json"))

clusters_by_size = {
    12: clusters_12,
    24: clusters_24,
    48: clusters_48,
}


def to_string(label):
    if label == "SD_2":
        label = "Stable Diffusion 2.0"
    elif label == "SD_14":
        label = "Stable Diffusion 1.4"
    elif label == "DallE":
        label = "Dall-E 2"
    elif label == "non-binary":
        label = "non-binary person"
    elif label == "person":
        label = "<i>unmarked</i> (person)"
    elif label == "":
        label = "<i>unmarked</i> ()"
    elif label == "gender":
        label = "gender term"
    return label


def summarize_clusters(clusters_list, max_terms=3):
    for cl_id, cl_dict in enumerate(clusters_list):
        total = len(cl_dict["img_path_list"])
        gdr_list = cl_dict["labels_gender"]
        eth_list = cl_dict["labels_ethnicity"]
        cl_dict["sentence_desc"] = (
            f"Cluster {cl_id} | \t"
            + f"gender terms incl.: {gdr_list[0][0].replace('person', 'unmarked(gender)')}"
            + (
                f" - {gdr_list[1][0].replace('person', 'unmarked(gender)')} | "
                if len(gdr_list) > 1
                else " | "
            )
            + f"ethnicity terms incl.: {'unmarked(ethnicity)' if eth_list[0][0] == '' else eth_list[0][0]}"
            + (
                f" - {'unmarked(ethnicity)' if eth_list[1][0] == '' else eth_list[1][0]}"
                if len(eth_list) > 1
                else ""
            )
        )
        cl_dict["summary_desc"] = (
            f"Cluster {cl_id} has {total} images.\n"
            + f"- The most represented gender terms are {gdr_list[0][0].replace('person', 'unmarked')} ({gdr_list[0][1]})"
            + (
                f" and {gdr_list[1][0].replace('person', 'unmarked')} ({gdr_list[1][1]}).\n"
                if len(gdr_list) > 1
                else ".\n"
            )
            + f"- The most represented ethnicity terms are {'unmarked' if eth_list[0][0] == '' else eth_list[0][0]} ({eth_list[0][1]})"
            + (
                f" and {'unmarked' if eth_list[1][0] == '' else eth_list[1][0]} ({eth_list[1][1]}).\n"
                if len(eth_list) > 1
                else ".\n"
            )
            + "See below for a more detailed description."
        )


for _, clusters_list in clusters_by_size.items():
    summarize_clusters(clusters_list)

dropdown_descs = dict(
    (num_clusters, [cl_dct["sentence_desc"] for cl_dct in clusters_list])
    for num_clusters, clusters_list in clusters_by_size.items()
)


def describe_cluster(cl_dict, block="label", max_items=4):
    labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
    labels_values.reverse()
    total = float(sum(cl_dict.values()))
    lv_prcnt = list(
        (item[0], round(item[1] * 100 / total, 0)) for item in labels_values
    )
    top_label = lv_prcnt[0][0]
    description_string = (
        "<span>The most represented %s is <b>%s</b>, making up about <b>%d%%</b> of the cluster.</span>"
        % (to_string(block), to_string(top_label), lv_prcnt[0][1])
    )
    description_string += "<p>This is followed by: "
    for lv in lv_prcnt[1 : min(len(lv_prcnt), 1 + max_items)]:
        description_string += "<BR/><b>%s:</b> %d%%" % (to_string(lv[0]), lv[1])
    if len(lv_prcnt) > max_items + 1:
        description_string += "<BR/><b> - Other terms:</b> %d%%" % (
            sum(lv[1] for lv in lv_prcnt[max_items + 1 :]),
        )
    description_string += "</p>"
    return description_string


def show_cluster(cl_id, num_clusters):
    if not cl_id:
        cl_id = 0
    else:
        cl_id = (
            dropdown_descs[num_clusters].index(cl_id)
            if cl_id in dropdown_descs[num_clusters]
            else 0
        )
    if not num_clusters:
        num_clusters = 12
    cl_dct = clusters_by_size[num_clusters][cl_id]
    images = []
    for i in range(8):
        img_path = "/".join(
            [st.replace("/", "") for st in cl_dct["img_path_list"][i].split("//")][3:]
        )
        im = Image.open(os.path.join("identities-images", img_path))
        # .resize((256, 256))
        caption = (
            "_".join([img_path.split("/")[0], img_path.split("/")[-1]])
            .replace("Photo_portrait_of_an_", "")
            .replace("Photo_portrait_of_a_", "")
            .replace("SD_v2_random_seeds_identity_", "(SD v.2) ")
            .replace("dataset-identities-dalle2_", "(Dall-E 2) ")
            .replace("SD_v1.4_random_seeds_identity_", "(SD v.1.4) ")
            .replace("_", " ")
        )
        images.append((im, caption))
    model_fig = go.Figure()
    model_fig.add_trace(
        go.Pie(
            labels=list(dict(cl_dct["labels_model"]).keys()),
            values=list(dict(cl_dct["labels_model"]).values()),
        )
    )
    model_description = describe_cluster(dict(cl_dct["labels_model"]), "system")

    gender_fig = go.Figure()
    gender_fig.add_trace(
        go.Pie(
            labels=list(dict(cl_dct["labels_gender"]).keys()),
            values=list(dict(cl_dct["labels_gender"]).values()),
        )
    )
    gender_description = describe_cluster(dict(cl_dct["labels_gender"]), "gender")

    ethnicity_fig = go.Figure()
    ethnicity_fig.add_trace(
        go.Bar(
            x=list(dict(cl_dct["labels_ethnicity"]).keys()),
            y=list(dict(cl_dct["labels_ethnicity"]).values()),
            marker_color=px.colors.qualitative.G10,
        )
    )
    ethnicity_description = describe_cluster(
        dict(cl_dct["labels_ethnicity"]), "ethnicity"
    )

    return (
        clusters_by_size[num_clusters][cl_id]["summary_desc"],
        gender_fig,
        gender_description,
        model_fig,
        model_description,
        ethnicity_fig,
        ethnicity_description,
        images,
        gr.update(choices=dropdown_descs[num_clusters]),
        #        gr.update(choices=[i for i in range(num_clusters)]),
    )


with gr.Blocks(title=TITLE) as demo:
    gr.Markdown(_INTRO)
    with gr.Accordion(
        "How do diffusion-based models represent gender and ethnicity?", open =False
    ):
        gr.Markdown(_CONTEXT)
    gr.HTML(
        """<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
    )
    num_clusters = gr.Radio(
        [12, 24, 48],
        value=12,
        label="How many clusters do you want to make from the data?",
    )

    with gr.Row():
        with gr.Column():
            cluster_id = gr.Dropdown(
                choices=dropdown_descs[num_clusters.value],
                value=0,
                label="Select cluster to visualize:",
            )
            a = gr.Text(label="Cluster summary")
        with gr.Column():
            gallery = gr.Gallery(label="Most representative images in cluster").style(
                grid=[2, 4], height="auto"
            )
    with gr.Row():
        with gr.Column():
            c = gr.Plot(label="How many images from each system?")
            c_desc = gr.HTML(label="")
        with gr.Column(scale=1):
            b = gr.Plot(label="Which gender terms are represented?")
            b_desc = gr.HTML(label="")
        with gr.Column(scale=2):
            d = gr.Plot(label="Which ethnicity terms are present?")
            d_desc = gr.HTML(label="")

    gr.Markdown(
        "### Plot Descriptions \n\n"
        + " The **System makeup** plot (*left*) corresponds to the number of images from the cluster that come from each of the TTI systems that we are comparing: Dall-E 2, Stable Diffusion v.1.4. and Stable Diffusion v.2.\n\n"
        + " The **Gender term makeup** plot (*middle*) shows the number of images based on the input prompts that used the phrases man, woman, non-binary person, and person (unmarked) to describe the figure's gender.\n\n"
        + " The **Ethnicity label makeup** plot (*right*) corresponds to the number of images from each of the 18 ethnicity descriptions used in the prompts. A blank value denotes unmarked ethnicity.\n\n"
    )
    demo.load(
        fn=show_cluster,
        inputs=[cluster_id, num_clusters],
        outputs=[a, b, b_desc, c, c_desc, d, d_desc, gallery, cluster_id],
    )
    num_clusters.change(
        fn=show_cluster,
        inputs=[cluster_id, num_clusters],
        outputs=[
            a,
            b,
            b_desc,
            c,
            c_desc,
            d,
            d_desc,
            gallery,
            cluster_id,
        ],
    )
    cluster_id.change(
        fn=show_cluster,
        inputs=[cluster_id, num_clusters],
        outputs=[a, b, b_desc, c, c_desc, d, d_desc, gallery, cluster_id],
    )

if __name__ == "__main__":
    demo.queue().launch(debug=True)