Spaces:
Sleeping
Sleeping
from datasets import load_dataset | |
import shutil | |
import json | |
from collections import defaultdict | |
import multiprocessing | |
import gensim | |
from sklearn.metrics import classification_report | |
from gensim import corpora | |
from gensim.test.utils import common_texts | |
from gensim.models import Word2Vec | |
from gensim.models import KeyedVectors | |
from gensim.models import fasttext | |
from gensim.test.utils import datapath | |
from wefe.datasets import load_bingliu | |
from wefe.metrics import RNSB | |
from wefe.query import Query | |
from wefe.word_embedding_model import WordEmbeddingModel | |
from wefe.utils import plot_queries_results, run_queries | |
import pandas as pd | |
import gensim.downloader as api | |
import glob | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.ensemble import RandomForestClassifier | |
from wefe.metrics import WEAT | |
from wefe.datasets import load_weat | |
from wefe.utils import run_queries | |
from wefe.utils import plot_queries_results | |
import random | |
from scipy.special import expit | |
import math | |
import sys | |
import os | |
import argparse | |
import nltk | |
import scipy.sparse | |
import numpy as np | |
import string | |
import io | |
from sklearn.model_selection import train_test_split | |
'''STEPS FOR CODE: | |
1. Train word embeddings on Simple English Wikipedia; | |
2. Compare these to other pre-trained embeddings; | |
3. Quantify biases that exist in these word embeddings; | |
4. Use your word embeddings as features in a simple text classifier; | |
''' | |
def load_vectors(fname): | |
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore') | |
n, d = map(int, fin.readline().split()) | |
data = {} | |
# print("Hello", n, d) | |
for line in fin: | |
tokens = line.rstrip().split(' ') | |
data[tokens[0]] = map(float, tokens[1:]) | |
# print(data) | |
print(data) | |
return data | |
def train_embeddings(): | |
'''TRAIN WORD EMBEDDINGS | |
This will be making use of the dataset from wikipedia and the first step''' | |
dataset = load_dataset("wikipedia", "20220301.simple") | |
cores = multiprocessing.cpu_count() | |
# check the first example of the training portion of the dataset : | |
# print(dataset['train'][0]) | |
dataset_size = len(dataset) | |
### BUILD VOCAB ### | |
# print(type(dataset["train"][0])) | |
vocab = set() | |
vocab_size = 0 | |
count = 0 | |
## Generate vocab and split sentances and words? | |
data = [] | |
for index, page in enumerate(dataset["train"]): | |
document = page["text"] | |
document = document.replace("\n", ". ") | |
# print(document) | |
for sent in document.split("."): | |
# print("Sentance:", sent) | |
new_sent = [] | |
clean_sent =[s for s in sent if s.isalnum() or s.isspace()] | |
clean_sent = "".join(clean_sent) | |
for word in clean_sent.split(" "): | |
if len(word) > 0: | |
new_word = word.lower() | |
# print("Word:", new_word) | |
if new_word[0] not in string.punctuation: | |
new_sent.append(new_word) | |
if len(new_sent) > 0: | |
data.append(new_sent) | |
# print("New Sent:", new_sent) | |
for index, page in enumerate(dataset["train"]): | |
# print(page["text"]) | |
# for text in page: | |
# print(text) | |
text = page["text"] | |
clean_text = [s for s in text if s.isalnum() or s.isspace()] | |
clean_text = "".join(clean_text) | |
clean_text = clean_text.replace("\n", " ") | |
# text = text.replace('; ', ' ').replace(", ", " ").replace("\n", " ").replace(":", " ").replace(". ", " ").replace("! ", " ").replace("? ", " ").replace() | |
for word in clean_text.split(" "): | |
# print(word) | |
if word != "\n" and word != " " and word not in vocab: | |
vocab.add(word) | |
vocab_size += 1 | |
# if index == 10: | |
# break | |
# print(f"word #{index}/{count} is {word}") | |
count += 1 | |
# print(f"There are {vocab_size} vocab words") | |
embeddings_model = Word2Vec( | |
data, | |
epochs= 10, | |
window=10, | |
vector_size= 50) | |
embeddings_model.save("word2vec.model") | |
skip_model = Word2Vec( | |
data, | |
epochs= 10, | |
window=10, | |
vector_size= 50, | |
sg=1) | |
skip_model.save("skip2vec.model") | |
embeddings_model = Word2Vec.load("word2vec.model") | |
skip_model = Word2Vec.load("skip2vec.model") | |
# embeddings_model.train(dataset, total_examples=dataset_size, epochs=15) | |
# print(embeddings_model['train']) | |
# print(embeddings_model.wv["france"]) | |
return embeddings_model, skip_model | |
def get_data(): | |
dataset = load_dataset("wikipedia", "20220301.simple") | |
cores = multiprocessing.cpu_count() | |
# check the first example of the training portion of the dataset : | |
# print(dataset['train'][0]) | |
dataset_size = len(dataset) | |
### BUILD VOCAB ### | |
# print(type(dataset["train"][0])) | |
vocab = set() | |
vocab_size = 0 | |
count = 0 | |
## Generate vocab and split sentances and words? | |
data = [] | |
num_sents = 0 | |
for index, page in enumerate(dataset["train"]): | |
document = page["text"] | |
document = document.replace("\n", ". ") | |
# print(document) | |
for sent in document.split("."): | |
num_sents += 1 | |
# print("Sentance:", sent) | |
new_sent = [] | |
clean_sent =[s for s in sent if s.isalnum() or s.isspace()] | |
clean_sent = "".join(clean_sent) | |
for word in clean_sent.split(" "): | |
if len(word) > 0: | |
new_word = word.lower() | |
# print("Word:", new_word) | |
if new_word[0] not in string.punctuation: | |
new_sent.append(new_word) | |
if len(new_sent) > 0: | |
data.append(new_sent) | |
# print("New Sent:", new_sent) | |
return data, num_sents | |
def compare_embeddings(cbow, skip, urban, fasttext): | |
'''COMPARE EMBEDDINGS''' | |
print("Most Similar to dog") | |
print("cbow", cbow.wv.most_similar(positive=['dog'], negative=[], topn=2)) | |
print("skip", skip.wv.most_similar(positive=['dog'], negative=[], topn=2)) | |
print("urban", urban.most_similar(positive=['dog'], negative=[], topn=2)) | |
print("fasttext", fasttext.most_similar(positive=['dog'], negative=[], topn=2)) | |
print("\nMost Similar to Pizza - Pepperoni + Pretzel") | |
print("cbow", cbow.wv.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2)) | |
print("skip", skip.wv.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2)) | |
print("urban", urban.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2)) | |
print("fasttext", fasttext.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2)) | |
print("\nMost Similar to witch - woman + man") | |
print("cbow", cbow.wv.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2)) | |
print("skip", skip.wv.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2)) | |
print("urban", urban.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2)) | |
print("fasttext", fasttext.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2)) | |
print("\nMost Similar to mayor - town + country") | |
print("cbow", cbow.wv.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2)) | |
print("skip", skip.wv.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2)) | |
print("urban", urban.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2)) | |
print("fasttext", fasttext.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2)) | |
print("\nMost Similar to death") | |
print("cbow", cbow.wv.most_similar(positive=['death'], negative=[], topn=2)) | |
print("skip", skip.wv.most_similar(positive=['death'], negative=[], topn=2)) | |
print("urban", urban.most_similar(positive=['death'], negative=[], topn=2)) | |
print("fasttext", fasttext.most_similar(positive=['death'], negative=[], topn=2)) | |
def quantify_bias(cbow, skip, urban, fasttext): | |
'''QUANTIFY BIASES''' | |
'''Using WEFE, RNSB''' | |
RNSB_words = [ | |
['christianity'], | |
['catholicism'], | |
['islam'], | |
['judaism'], | |
['hinduism'], | |
['buddhism'], | |
['mormonism'], | |
['scientology'], | |
['taoism']] | |
weat_wordset = load_weat() | |
models = [WordEmbeddingModel(cbow.wv, "CBOW"), | |
WordEmbeddingModel(skip.wv, "skip-gram"), | |
WordEmbeddingModel(urban, "urban dictionary"), | |
WordEmbeddingModel(fasttext, "fasttext")] | |
# Define the 10 Queries: | |
# print(weat_wordset["science"]) | |
religions = ['christianity', | |
'catholicism', | |
'islam', | |
'judaism', | |
'hinduism', | |
'buddhism', | |
'mormonism', | |
'scientology', | |
'taoism', | |
'atheism'] | |
queries = [ | |
# Flowers vs Insects wrt Pleasant (5) and Unpleasant (5) | |
Query([religions, weat_wordset['arts']], | |
[weat_wordset['career'], weat_wordset['family']], | |
['Religion', 'Art'], ['Career', 'Family']), | |
Query([religions, weat_wordset['weapons']], | |
[weat_wordset['male_terms'], weat_wordset['female_terms']], | |
['Religion', 'Weapons'], ['Male terms', 'Female terms']), | |
] | |
wefe_results = run_queries(WEAT, | |
queries, | |
models, | |
metric_params ={ | |
'preprocessors': [ | |
{}, | |
{'lowercase': True } | |
] | |
}, | |
warn_not_found_words = True | |
).T.round(2) | |
print(wefe_results) | |
plot_queries_results(wefe_results).show() | |
def text_classifier(cbow): | |
'''SIMPLE TEXT CLASSIFIER''' | |
'''For each document, average together all embeddings for the | |
individual words in that document to get a new, d-dimensional representation | |
of that document (this is essentially a “continuous bag-of-words”). Note that | |
your input feature size is only d now, instead of the size of your entire vocabulary. | |
Compare the results of training a model using these “CBOW” input features to | |
your original (discrete) BOW model.''' | |
pos_train_files = glob.glob('aclImdb/train/pos/*') | |
neg_train_files = glob.glob('aclImdb/train/neg/*') | |
# print(pos_train_files[:5]) | |
num_files_per_class = 1000 | |
# bow_train_files = cbow | |
all_train_files = pos_train_files[:num_files_per_class] + neg_train_files[:num_files_per_class] | |
# vectorizer = TfidfVectorizer(input="filename", stop_words="english") | |
# vectors = vectorizer.fit_transform(all_train_files) | |
d = len(cbow.wv["man"]) | |
vectors = np.empty([len(all_train_files), d]) | |
count = 0 | |
vocab = set() | |
for doc in all_train_files: | |
temp_array = avg_embeddings(doc, cbow, vocab) | |
if len(temp_array) > 0: | |
vectors[count] = temp_array | |
count += 1 | |
else: | |
vectors = np.delete(vectors, count) | |
# vectors = np.array(avg_embeddings(doc, cbow) for doc in all_train_files) | |
# print(vectors) | |
# print(vocab) | |
# len(vectorizer.vocabulary_) | |
vectors[0].sum() | |
# print("Vector at 0", vectors[0]) | |
X = vectors | |
y = [1] * num_files_per_class + [0] * num_files_per_class | |
len(y) | |
x_0 = X[0] | |
w = np.zeros(X.shape[1]) | |
# x_0_dense = x_0.todense() | |
x_0.dot(w) | |
w,b = sgd_for_lr_with_ce(X,y) | |
# w | |
# sorted_vocab = sorted([(k,v) for k,v in vectorizer.vocabulary_.items()],key=lambda x:x[1]) | |
sorted_vocab = sorted(vocab) | |
# sorted_vocab = [a for (a,b) in sorted_vocab] | |
sorted_words_weights = sorted([x for x in zip(sorted_vocab, w)], key=lambda x:x[1]) | |
sorted_words_weights[-50:] | |
preds = predict_y_lr(w,b,X) | |
preds | |
w,b = sgd_for_lr_with_ce(X, y, num_passes=10) | |
y_pred = predict_y_lr(w,b,X) | |
print(classification_report(y, y_pred)) | |
# compute for dev set | |
# pos_dev_files = glob.glob('aclImdb/test/pos/*') | |
# neg_dev_files = glob.glob('aclImdb/test/neg/*') | |
# num_dev_files_per_class = 100 | |
# all_dev_files = pos_dev_files[:num_dev_files_per_class] + neg_dev_files[:num_dev_files_per_class] | |
# # use the same vectorizer from before! otherwise features won't line up | |
# # don't fit it again, just use it to transform! | |
# X_dev = vectorizer.transform(all_dev_files) | |
# y_dev = [1]* num_dev_files_per_class + [0]* num_dev_files_per_class | |
# # don't need new w and b, these are from out existing model | |
# y_dev_pred = predict_y_lr(w,b,X_dev) | |
# print(classification_report(y_dev, y_dev_pred)) | |
def avg_embeddings(doc, model, vocab: set): | |
words = [] | |
# remove out-of-vocabulary words | |
with open(doc, "r") as file: | |
for line in file: | |
for word in line.split(): | |
words.append(word) | |
vocab.add(word) | |
words = [word for word in words if word in model.wv.index_to_key] | |
if len(words) >= 1: | |
return np.mean(model.wv[words], axis=0) | |
else: | |
return [] | |
def sent_vec(sent, cbow): | |
vector_size = cbow.wv.vector_size | |
wv_res = np.zeros(vector_size) | |
# print(wv_res) | |
ctr = 1 | |
for w in sent: | |
if w in cbow.wv: | |
ctr += 1 | |
wv_res += cbow.wv[w] | |
wv_res = wv_res/ctr | |
return wv_res | |
def spacy_tokenizer(sentence): | |
# Creating our token object, which is used to create documents with linguistic annotations. | |
# doc = nlp(sentence) | |
# print(doc) | |
# print(type(doc)) | |
# Lemmatizing each token and converting each token into lowercase | |
# mytokens = [ word.lemma_.lower().strip() for word in doc ] | |
# print(mytokens) | |
# Removing stop words | |
# mytokens = [ word for word in mytokens if word not in stop_words and word not in punctuations ] | |
# return preprocessed list of tokens | |
return 0 | |
def cbow_classifier(cbow, data, num_sentances): | |
vocab_len = len(cbow.wv.index_to_key) | |
embeddings = [] | |
embedding_dict = {} | |
vocab = set(cbow.wv.index_to_key) | |
# print("Data len", len(data)) | |
# print("Data at 0", data[0]) | |
X_temp = np.empty([len(data), 1]) | |
X_train_vect = np.array([np.array([cbow.wv[i] for i in ls if i in vocab]) | |
for ls in data]) | |
X_test_vect = np.array([np.array([cbow.wv[i] for i in ls if i in vocab]) | |
for ls in data]) | |
# words = [word for word in words if word in cbow.wv.index_to_key] | |
for word in vocab: | |
# embedding[word] = cbow.wv[word] | |
embeddings.append(np.mean(cbow.wv[word], axis=0)) | |
embedding_dict[word] = np.mean(cbow.wv[word], axis=0) | |
X = embeddings | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,stratify=y) | |
# print(embeddings) | |
# print(vocab_len) | |
# X_train_vect_avg = [] | |
# for v in X_train_vect: | |
# if v.size: | |
# X_train_vect_avg.append(v.mean(axis=0)) | |
# else: | |
# X_train_vect_avg.append(np.zeros(100, dtype=float)) | |
# X_test_vect_avg = [] | |
# for v in X_test_vect: | |
# if v.size: | |
# X_test_vect_avg.append(v.mean(axis=0)) | |
# else: | |
# X_test_vect_avg.append(np.zeros(100, dtype=float)) | |
# # for i, v in enumerate(X_train_vect_avg): | |
# # print(len(data.iloc[i]), len(v)) | |
# x_0 = X_train_vect_avg[0] | |
# num_files_per_class = 100 | |
# y = [1] * num_files_per_class + [0] * num_files_per_class | |
# w = np.zeros(X_train_vect_avg.shape[1]) | |
# x_0_dense = x_0.todense() | |
# x_0.dot(w) | |
# w,b = sgd_for_lr_with_ce(X_train_vect_avg, y) | |
# w | |
# sorted_vocab = sorted([(k,v) for k,v in enumerate(embedding_dict)],key=lambda x:x[1]) | |
# sorted_vocab = [a for (a,b) in sorted_vocab] | |
# sorted_words_weights = sorted([x for x in zip(sorted_vocab, w)], key=lambda x:x[1]) | |
# sorted_words_weights[-50:] | |
# preds = predict_y_lr(w,b,X_train_vect_avg) | |
# preds | |
# w,b = sgd_for_lr_with_ce(X_train_vect_avg, y, num_passes=10) | |
# y_pred = predict_y_lr(w,b,X_train_vect_avg) | |
# print(classification_report(y, y_pred)) | |
# # compute for dev set | |
# pos_dev_files = glob.glob('aclImdb/test/pos/*') | |
# neg_dev_files = glob.glob('aclImdb/test/neg/*') | |
# num_dev_files_per_class = 100 | |
# all_dev_files = pos_dev_files[:num_dev_files_per_class] + neg_dev_files[:num_dev_files_per_class] | |
# # use the same vectorizer from before! otherwise features won't line up | |
# # don't fit it again, just use it to transform! | |
# # X_dev = vectorizer.transform(all_dev_files) | |
# # y_dev = [1]* num_dev_files_per_class + [0]* num_dev_files_per_class | |
# # # don't need new w and b, these are from out existing model | |
# # y_dev_pred = predict_y_lr(w,b,X_dev) | |
# # print(classification_report(y_dev, y_dev_pred)) | |
def sgd_for_lr_with_ce(X, y, num_passes=5, learning_rate = 0.1): | |
num_data_points = X.shape[0] | |
# Initialize theta -> 0 | |
num_features = X.shape[1] | |
w = np.zeros(num_features) | |
b = 0.0 | |
# repeat until done | |
# how to define "done"? let's just make it num passes for now | |
# we can also do norm of gradient and when it is < epsilon (something tiny) | |
# we stop | |
for current_pass in range(num_passes): | |
# iterate through entire dataset in random order | |
order = list(range(num_data_points)) | |
random.shuffle(order) | |
for i in order: | |
# compute y-hat for this value of i given y_i and x_i | |
x_i = X[i] | |
y_i = y[i] | |
# need to compute based on w and b | |
# sigmoid(w dot x + b) | |
z = x_i.dot(w) + b | |
y_hat_i = expit(z) | |
# for each w (and b), modify by -lr * (y_hat_i - y_i) * x_i | |
w = w - learning_rate * (y_hat_i - y_i) * x_i | |
b = b - learning_rate * (y_hat_i - y_i) | |
# return theta | |
return w,b | |
def predict_y_lr(w,b,X,threshold=0.5): | |
# use our matrix operation version of the logistic regression model | |
# X dot w + b | |
# need to make w a column vector so the dimensions line up correctly | |
y_hat = X.dot( w.reshape((-1,1)) ) + b | |
# then just check if it's > threshold | |
preds = np.where(y_hat > threshold,1,0) | |
return preds | |
def main(): | |
parser = argparse.ArgumentParser( | |
prog='word_embedding', | |
description='This program will train a word embedding model using simple wikipedia.', | |
epilog='To skip training the model and to used the saved model "word2vec.model", use the command --skip or -s.' | |
) | |
parser.add_argument('-s', '--skip', action='store_true') | |
parser.add_argument('-e', '--extra', action='store_true') | |
parser.add_argument('-b', '--bias', action='store_true') | |
parser.add_argument('-c', '--compare', action='store_true') | |
parser.add_argument('-t', '--text', action='store_true') | |
args = parser.parse_args() | |
skip_model = None | |
cbow_model = None | |
ud_model = None | |
wiki_model = None | |
if args.compare: | |
if args.skip: | |
# print("Skipping") | |
cbow_model = Word2Vec.load("word2vec.model") | |
skip_model = Word2Vec.load("skip2vec.model") | |
ud_model = KeyedVectors.load("urban2vec.model") | |
wiki_model = KeyedVectors.load("wiki2vec.model") | |
elif args.extra: | |
# print("Extra mode") | |
cbow_model = Word2Vec.load("word2vec.model") | |
skip_model = Word2Vec.load("skip2vec.model") | |
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False) | |
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False) | |
wiki_model.save("wiki2vec.model") | |
ud_model.save("urban2vec.model") | |
else: | |
cbow_model, skip_model = train_embeddings() | |
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False) | |
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False) | |
wiki_model.save("wiki2vec.model") | |
ud_model.save("urban2vec.model") | |
compare_embeddings(cbow_model, skip_model, ud_model, wiki_model) | |
if args.bias: | |
if args.skip: | |
# print("Skipping") | |
cbow_model = Word2Vec.load("word2vec.model") | |
skip_model = Word2Vec.load("skip2vec.model") | |
ud_model = KeyedVectors.load("urban2vec.model") | |
wiki_model = KeyedVectors.load("wiki2vec.model") | |
elif args.extra: | |
# print("Extra mode") | |
cbow_model = Word2Vec.load("word2vec.model") | |
skip_model = Word2Vec.load("skip2vec.model") | |
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False) | |
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False) | |
wiki_model.save("wiki2vec.model") | |
ud_model.save("urban2vec.model") | |
else: | |
cbow_model, skip_model = train_embeddings() | |
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False) | |
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False) | |
wiki_model.save("wiki2vec.model") | |
ud_model.save("urban2vec.model") | |
quantify_bias(cbow_model, skip_model, ud_model, wiki_model) | |
if args.text: | |
if args.skip: | |
# print("Skipping") | |
cbow_model = Word2Vec.load("word2vec.model") | |
else: | |
cbow_model, skip_model = train_embeddings() | |
text_classifier(cbow_model) | |
# data, sents = get_data() | |
# cbow_classifier(cbow_model, data, sents) | |
# print("No errors?") | |
if __name__ == "__main__": | |
main() |