Spaces:
Runtime error
Runtime error
Add support for YT transcription
Browse files- app.py +324 -16
- requirements.txt +2 -1
- speech_to_text_buffered_infer_ctc.py +193 -0
- speech_to_text_buffered_infer_rnnt.py +247 -0
app.py
CHANGED
@@ -1,7 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
|
4 |
import nemo.collections.asr as nemo_asr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
SAMPLE_RATE = 16000
|
7 |
TITLE = "NeMo ASR Inference on Hugging Face"
|
@@ -32,7 +46,7 @@ ARTICLE = """
|
|
32 |
SUPPORTED_LANGUAGES = set([])
|
33 |
SUPPORTED_MODEL_NAMES = set([])
|
34 |
|
35 |
-
# HF models
|
36 |
hf_filter = nemo_asr.models.ASRModel.get_hf_model_filter()
|
37 |
hf_filter.task = "automatic-speech-recognition"
|
38 |
|
@@ -44,6 +58,8 @@ for info in hf_infos:
|
|
44 |
|
45 |
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
|
46 |
|
|
|
|
|
47 |
model_dict = {model_name: gr.Interface.load(f'models/{model_name}') for model_name in SUPPORTED_MODEL_NAMES}
|
48 |
|
49 |
SUPPORTED_LANG_MODEL_DICT = {}
|
@@ -63,8 +79,253 @@ for lang in SUPPORTED_LANG_MODEL_DICT.keys():
|
|
63 |
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
|
64 |
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def transcribe(microphone, audio_file, model_name):
|
67 |
-
model = model_dict[model_name]
|
68 |
|
69 |
warn_output = ""
|
70 |
if (microphone is not None) and (audio_file is not None):
|
@@ -84,7 +345,7 @@ def transcribe(microphone, audio_file, model_name):
|
|
84 |
|
85 |
try:
|
86 |
# Use HF API for transcription
|
87 |
-
transcriptions =
|
88 |
|
89 |
except Exception as e:
|
90 |
transcriptions = ""
|
@@ -98,21 +359,38 @@ def transcribe(microphone, audio_file, model_name):
|
|
98 |
return warn_output + transcriptions
|
99 |
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
with demo:
|
104 |
-
header = gr.Markdown(MARKDOWN)
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
lang_selector = gr.components.Dropdown(
|
111 |
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
|
112 |
)
|
113 |
models_in_lang = gr.components.Dropdown(
|
114 |
choices=sorted(list(SUPPORTED_LANG_MODEL_DICT["en"])),
|
115 |
-
value=
|
116 |
label="Models",
|
117 |
interactive=True,
|
118 |
)
|
@@ -122,17 +400,47 @@ with demo:
|
|
122 |
default = models_names[0]
|
123 |
|
124 |
if lang == 'en':
|
125 |
-
default =
|
126 |
return models_in_lang.update(choices=models_names, value=default)
|
127 |
|
128 |
lang_selector.change(update_models_with_lang, inputs=[lang_selector], outputs=[models_in_lang])
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
|
135 |
gr.components.HTML(ARTICLE)
|
136 |
|
137 |
demo.queue(concurrency_count=1)
|
138 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import uuid
|
4 |
+
import tempfile
|
5 |
+
import subprocess
|
6 |
+
import re
|
7 |
+
|
8 |
import gradio as gr
|
9 |
+
import pytube as pt
|
10 |
|
11 |
import nemo.collections.asr as nemo_asr
|
12 |
+
import speech_to_text_buffered_infer_ctc as buffered_ctc
|
13 |
+
import speech_to_text_buffered_infer_rnnt as buffered_rnnt
|
14 |
+
|
15 |
+
# Set NeMo cache dir as /tmp
|
16 |
+
from nemo import constants
|
17 |
+
os.environ[constants.NEMO_ENV_CACHE_DIR] = "/tmp/nemo"
|
18 |
+
|
19 |
|
20 |
SAMPLE_RATE = 16000
|
21 |
TITLE = "NeMo ASR Inference on Hugging Face"
|
|
|
46 |
SUPPORTED_LANGUAGES = set([])
|
47 |
SUPPORTED_MODEL_NAMES = set([])
|
48 |
|
49 |
+
# HF models, grouped by language identifier
|
50 |
hf_filter = nemo_asr.models.ASRModel.get_hf_model_filter()
|
51 |
hf_filter.task = "automatic-speech-recognition"
|
52 |
|
|
|
58 |
|
59 |
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
|
60 |
|
61 |
+
SUPPORTED_MODEL_NAMES = list(filter(lambda x: 'en' in x and 'conformer_transducer_large' in x, SUPPORTED_MODEL_NAMES))
|
62 |
+
|
63 |
model_dict = {model_name: gr.Interface.load(f'models/{model_name}') for model_name in SUPPORTED_MODEL_NAMES}
|
64 |
|
65 |
SUPPORTED_LANG_MODEL_DICT = {}
|
|
|
79 |
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
|
80 |
|
81 |
|
82 |
+
def parse_duration(audio_file):
|
83 |
+
"""
|
84 |
+
FFMPEG to calculate durations. Libraries can do it too, but filetypes cause different libraries to behave differently.
|
85 |
+
"""
|
86 |
+
process = subprocess.Popen(['ffmpeg', '-i', audio_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
87 |
+
stdout, stderr = process.communicate()
|
88 |
+
matches = re.search(
|
89 |
+
r"Duration:\s{1}(?P<hours>\d+?):(?P<minutes>\d+?):(?P<seconds>\d+\.\d+?),", stdout.decode(), re.DOTALL
|
90 |
+
).groupdict()
|
91 |
+
|
92 |
+
duration = 0.0
|
93 |
+
duration += float(matches['hours']) * 60.0 * 60.0
|
94 |
+
duration += float(matches['minutes']) * 60.0
|
95 |
+
duration += float(matches['seconds']) * 1.0
|
96 |
+
return duration
|
97 |
+
|
98 |
+
|
99 |
+
def resolve_model_type(model_name: str) -> str:
|
100 |
+
"""
|
101 |
+
Map model name to a class type, without loading the model. Has some hardcoded assumptions in
|
102 |
+
semantics of model naming.
|
103 |
+
"""
|
104 |
+
# Loss specific maps
|
105 |
+
if 'hybrid' in model_name or 'hybrid_ctc' in model_name or 'hybrid_transducer' in model_name:
|
106 |
+
return 'hybrid'
|
107 |
+
elif 'transducer' in model_name or 'rnnt' in model_id:
|
108 |
+
return 'transducer'
|
109 |
+
elif 'ctc' in model_name:
|
110 |
+
return 'ctc'
|
111 |
+
|
112 |
+
# Model specific maps
|
113 |
+
elif 'jasper' in model_name:
|
114 |
+
return 'ctc'
|
115 |
+
elif 'quartznet' in model_name:
|
116 |
+
return 'ctc'
|
117 |
+
elif 'citrinet' in model_name:
|
118 |
+
return 'ctc'
|
119 |
+
elif 'contextnet' in model_name:
|
120 |
+
return 'ctc'
|
121 |
+
else:
|
122 |
+
# Unknown model type
|
123 |
+
return None
|
124 |
+
|
125 |
+
|
126 |
+
def resolve_model_stride(model_name) -> int:
|
127 |
+
"""
|
128 |
+
Model specific pre-calc of stride levels.
|
129 |
+
Dont laod model to get such info.
|
130 |
+
"""
|
131 |
+
if 'jasper' in model_name:
|
132 |
+
return 2
|
133 |
+
if 'quartznet' in model_name:
|
134 |
+
return 2
|
135 |
+
if 'conformer' in model_name:
|
136 |
+
return 4
|
137 |
+
if 'squeezeformer' in model_name:
|
138 |
+
return 4
|
139 |
+
if 'citrinet' in model_name:
|
140 |
+
return 8
|
141 |
+
if 'contextnet' in model_name:
|
142 |
+
return 8
|
143 |
+
|
144 |
+
return -1
|
145 |
+
|
146 |
+
|
147 |
+
def convert_audio(audio_filepath):
|
148 |
+
"""
|
149 |
+
Transcode all mp3 files to monochannel 16 kHz wav files.
|
150 |
+
"""
|
151 |
+
filedir = os.path.split(audio_filepath)[0]
|
152 |
+
filename, ext = os.path.splitext(audio_filepath)
|
153 |
+
|
154 |
+
if ext == 'wav':
|
155 |
+
return audio_filepath
|
156 |
+
|
157 |
+
out_filename = os.path.join(filedir, filename + '.wav')
|
158 |
+
process = subprocess.Popen(
|
159 |
+
['ffmpeg', '-i', audio_filepath, '-ac', '1', '-ar', str(SAMPLE_RATE), out_filename],
|
160 |
+
stdout=subprocess.PIPE,
|
161 |
+
stderr=subprocess.STDOUT,
|
162 |
+
)
|
163 |
+
stdout, stderr = process.communicate()
|
164 |
+
|
165 |
+
if os.path.exists(out_filename):
|
166 |
+
return out_filename
|
167 |
+
else:
|
168 |
+
return None
|
169 |
+
|
170 |
+
|
171 |
+
def extract_result_from_manifest(filepath, model_name) -> (bool, str):
|
172 |
+
"""
|
173 |
+
Parse the written manifest which is result of the buffered inference process.
|
174 |
+
"""
|
175 |
+
data = []
|
176 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
177 |
+
for line in f:
|
178 |
+
try:
|
179 |
+
line = json.loads(line)
|
180 |
+
data.append(line['pred_text'])
|
181 |
+
except Exception as e:
|
182 |
+
pass
|
183 |
+
|
184 |
+
if len(data) > 0:
|
185 |
+
return True, data[0]
|
186 |
+
else:
|
187 |
+
return False, f"Could not perform inference on model with name : {model_name}"
|
188 |
+
|
189 |
+
|
190 |
+
def infer_audio(model_name: str, audio_file: str) -> str:
|
191 |
+
"""
|
192 |
+
Main method that switches from HF inference for small audio files to Buffered CTC/RNNT mode for long audio files.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
model_name: Str name of the model (potentially with / to denote HF models)
|
196 |
+
audio_file: Path to an audio file (mp3 or wav)
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
str which is the transcription if successful.
|
200 |
+
"""
|
201 |
+
# Parse the duration of the audio file
|
202 |
+
duration = parse_duration(audio_file)
|
203 |
+
|
204 |
+
if duration > 60.0: # Longer than one minute; use buffered mode
|
205 |
+
# Process audio to be of wav type (possible youtube audio)
|
206 |
+
audio_file = convert_audio(audio_file)
|
207 |
+
|
208 |
+
# If audio file transcoding failed, let user know
|
209 |
+
if audio_file is None:
|
210 |
+
return "Failed to convert audio file to wav."
|
211 |
+
|
212 |
+
# Extract audio dir from resolved audio filepath
|
213 |
+
audio_dir = os.path.split(audio_file)[0]
|
214 |
+
|
215 |
+
# Next calculate the stride of each model
|
216 |
+
model_stride = resolve_model_stride(model_name)
|
217 |
+
|
218 |
+
if model_stride < 0:
|
219 |
+
return f"Failed to compute the model stride for model with name : {model_name}"
|
220 |
+
|
221 |
+
# Process model type (CTC/RNNT/Hybrid)
|
222 |
+
model_type = resolve_model_type(model_name)
|
223 |
+
|
224 |
+
if model_type is None:
|
225 |
+
|
226 |
+
# Model type could not be infered.
|
227 |
+
# Try all feasible options
|
228 |
+
RESULT = None
|
229 |
+
|
230 |
+
try:
|
231 |
+
ctc_config = buffered_ctc.TranscriptionConfig(
|
232 |
+
pretrained_name=model_name,
|
233 |
+
audio_dir=audio_dir,
|
234 |
+
output_filename="output.json",
|
235 |
+
audio_type="wav",
|
236 |
+
overwrite_transcripts=True,
|
237 |
+
model_stride=model_stride,
|
238 |
+
chunk_len_in_secs=20.0,
|
239 |
+
total_buffer_in_secs=30.0,
|
240 |
+
)
|
241 |
+
|
242 |
+
buffered_ctc.main(ctc_config)
|
243 |
+
result = extract_result_from_manifest('output.json', model_name)
|
244 |
+
if result[0]:
|
245 |
+
RESULT = result[1]
|
246 |
+
|
247 |
+
except Exception as e:
|
248 |
+
pass
|
249 |
+
|
250 |
+
try:
|
251 |
+
rnnt_config = buffered_rnnt.TranscriptionConfig(
|
252 |
+
pretrained_name=model_name,
|
253 |
+
audio_dir=audio_dir,
|
254 |
+
output_filename="output.json",
|
255 |
+
audio_type="wav",
|
256 |
+
overwrite_transcripts=True,
|
257 |
+
model_stride=model_stride,
|
258 |
+
chunk_len_in_secs=20.0,
|
259 |
+
total_buffer_in_secs=30.0,
|
260 |
+
)
|
261 |
+
|
262 |
+
buffered_rnnt.main(rnnt_config)
|
263 |
+
result = extract_result_from_manifest('output.json', model_name)[-1]
|
264 |
+
|
265 |
+
if result[0]:
|
266 |
+
RESULT = result[1]
|
267 |
+
except Exception as e:
|
268 |
+
pass
|
269 |
+
|
270 |
+
if RESULT is None:
|
271 |
+
return f"Could not parse model type; failed to perform inference with model {model_name}!"
|
272 |
+
|
273 |
+
elif model_type == 'ctc':
|
274 |
+
|
275 |
+
# CTC Buffered Inference
|
276 |
+
ctc_config = buffered_ctc.TranscriptionConfig(
|
277 |
+
pretrained_name=model_name,
|
278 |
+
audio_dir=audio_dir,
|
279 |
+
output_filename="output.json",
|
280 |
+
audio_type="wav",
|
281 |
+
overwrite_transcripts=True,
|
282 |
+
model_stride=model_stride,
|
283 |
+
chunk_len_in_secs=20.0,
|
284 |
+
total_buffer_in_secs=30.0,
|
285 |
+
)
|
286 |
+
|
287 |
+
buffered_ctc.main(ctc_config)
|
288 |
+
return extract_result_from_manifest('output.json', model_name)[-1]
|
289 |
+
|
290 |
+
elif model_type == 'transducer':
|
291 |
+
|
292 |
+
# RNNT Buffered Inference
|
293 |
+
rnnt_config = buffered_rnnt.TranscriptionConfig(
|
294 |
+
pretrained_name=model_name,
|
295 |
+
audio_dir=audio_dir,
|
296 |
+
output_filename="output.json",
|
297 |
+
audio_type="wav",
|
298 |
+
overwrite_transcripts=True,
|
299 |
+
model_stride=model_stride,
|
300 |
+
chunk_len_in_secs=20.0,
|
301 |
+
total_buffer_in_secs=30.0,
|
302 |
+
)
|
303 |
+
|
304 |
+
buffered_rnnt.main(rnnt_config)
|
305 |
+
return extract_result_from_manifest('output.json', model_name)[-1]
|
306 |
+
|
307 |
+
else:
|
308 |
+
return f"Could not parse model type; failed to perform inference with model {model_name}!"
|
309 |
+
|
310 |
+
else:
|
311 |
+
if model_name in model_dict:
|
312 |
+
model = model_dict[model_name]
|
313 |
+
else:
|
314 |
+
model = None
|
315 |
+
|
316 |
+
if model is not None:
|
317 |
+
# Use HF API for transcription
|
318 |
+
transcriptions = model(audio_file)
|
319 |
+
return transcriptions
|
320 |
+
else:
|
321 |
+
error = (
|
322 |
+
f"Could not find model {model_name} in list of available models : "
|
323 |
+
f"{list([k for k in model_dict.keys()])}"
|
324 |
+
)
|
325 |
+
return error
|
326 |
+
|
327 |
+
|
328 |
def transcribe(microphone, audio_file, model_name):
|
|
|
329 |
|
330 |
warn_output = ""
|
331 |
if (microphone is not None) and (audio_file is not None):
|
|
|
345 |
|
346 |
try:
|
347 |
# Use HF API for transcription
|
348 |
+
transcriptions = infer_audio(model_name, audio_data)
|
349 |
|
350 |
except Exception as e:
|
351 |
transcriptions = ""
|
|
|
359 |
return warn_output + transcriptions
|
360 |
|
361 |
|
362 |
+
def _return_yt_html_embed(yt_url):
|
363 |
+
video_id = yt_url.split("?v=")[-1]
|
364 |
+
HTML_str = (
|
365 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
366 |
+
" </center>"
|
367 |
+
)
|
368 |
+
return HTML_str
|
369 |
|
|
|
|
|
370 |
|
371 |
+
def yt_transcribe(yt_url, model_name):
|
372 |
+
yt = pt.YouTube(yt_url)
|
373 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
374 |
+
|
375 |
+
with tempfile.TemporaryDirectory() as tempdir:
|
376 |
+
file_uuid = str(uuid.uuid4().hex)
|
377 |
+
file_uuid = f"{tempdir}/{file_uuid}.mp3"
|
378 |
+
|
379 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
380 |
+
stream.download(filename=file_uuid)
|
381 |
|
382 |
+
text = infer_audio(model_name, file_uuid)
|
383 |
+
|
384 |
+
return html_embed_str, text
|
385 |
+
|
386 |
+
|
387 |
+
def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
|
388 |
lang_selector = gr.components.Dropdown(
|
389 |
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
|
390 |
)
|
391 |
models_in_lang = gr.components.Dropdown(
|
392 |
choices=sorted(list(SUPPORTED_LANG_MODEL_DICT["en"])),
|
393 |
+
value=default_en_model,
|
394 |
label="Models",
|
395 |
interactive=True,
|
396 |
)
|
|
|
400 |
default = models_names[0]
|
401 |
|
402 |
if lang == 'en':
|
403 |
+
default = default_en_model
|
404 |
return models_in_lang.update(choices=models_names, value=default)
|
405 |
|
406 |
lang_selector.change(update_models_with_lang, inputs=[lang_selector], outputs=[models_in_lang])
|
407 |
|
408 |
+
return lang_selector, models_in_lang
|
409 |
+
|
410 |
+
|
411 |
+
demo = gr.Blocks(title=TITLE, css=CSS)
|
412 |
+
|
413 |
+
with demo:
|
414 |
+
header = gr.Markdown(MARKDOWN)
|
415 |
+
|
416 |
+
with gr.Tab("Transcribe Audio"):
|
417 |
+
with gr.Row() as row:
|
418 |
+
file_upload = gr.components.Audio(source="upload", type='filepath', label='Upload File')
|
419 |
+
microphone = gr.components.Audio(source="microphone", type='filepath', label='Microphone')
|
420 |
+
|
421 |
+
lang_selector, models_in_lang = create_lang_selector_component()
|
422 |
+
|
423 |
+
transcript = gr.components.Label(label='Transcript')
|
424 |
+
|
425 |
+
run = gr.components.Button('Transcribe')
|
426 |
+
run.click(transcribe, inputs=[microphone, file_upload, models_in_lang], outputs=[transcript])
|
427 |
+
|
428 |
+
with gr.Tab("Transcribe Youtube"):
|
429 |
+
yt_url = gr.components.Textbox(
|
430 |
+
lines=1, label="Youtube URL", placeholder="Paste the URL to a YouTube video here"
|
431 |
+
)
|
432 |
+
|
433 |
+
lang_selector_yt, models_in_lang_yt = create_lang_selector_component(
|
434 |
+
default_en_model='nvidia/stt_en_conformer_transducer_large'
|
435 |
+
)
|
436 |
+
|
437 |
+
embedded_video = gr.components.HTML()
|
438 |
+
transcript = gr.components.Label(label='Transcript')
|
439 |
|
440 |
+
run = gr.components.Button('Transcribe YouTube')
|
441 |
+
run.click(yt_transcribe, inputs=[yt_url, models_in_lang_yt], outputs=[embedded_video, transcript])
|
442 |
|
443 |
gr.components.HTML(ARTICLE)
|
444 |
|
445 |
demo.queue(concurrency_count=1)
|
446 |
+
demo.launch(enable_queue=True)
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
nemo_toolkit[
|
|
|
|
1 |
+
git+https://github.com/NVIDIA/NeMo.git@{BRANCH}#egg=nemo_toolkit[all]
|
2 |
+
pytube
|
speech_to_text_buffered_infer_ctc.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
This script serves three goals:
|
17 |
+
(1) Demonstrate how to use NeMo Models outside of PytorchLightning
|
18 |
+
(2) Shows example of batch ASR inference
|
19 |
+
(3) Serves as CI test for pre-trained checkpoint
|
20 |
+
|
21 |
+
python speech_to_text_buffered_infer_ctc.py \
|
22 |
+
model_path=null \
|
23 |
+
pretrained_name=null \
|
24 |
+
audio_dir="<remove or path to folder of audio files>" \
|
25 |
+
dataset_manifest="<remove or path to manifest>" \
|
26 |
+
output_filename="<remove or specify output filename>" \
|
27 |
+
total_buffer_in_secs=4.0 \
|
28 |
+
chunk_len_in_secs=1.6 \
|
29 |
+
model_stride=4 \
|
30 |
+
batch_size=32
|
31 |
+
|
32 |
+
# NOTE:
|
33 |
+
You can use `DEBUG=1 python speech_to_text_buffered_infer_ctc.py ...` to print out the
|
34 |
+
predictions of the model, and ground-truth text if presents in manifest.
|
35 |
+
"""
|
36 |
+
import contextlib
|
37 |
+
import copy
|
38 |
+
import glob
|
39 |
+
import math
|
40 |
+
import os
|
41 |
+
from dataclasses import dataclass, is_dataclass
|
42 |
+
from typing import Optional
|
43 |
+
|
44 |
+
import torch
|
45 |
+
from omegaconf import OmegaConf
|
46 |
+
|
47 |
+
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchASR
|
48 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import (
|
49 |
+
compute_output_filename,
|
50 |
+
get_buffered_pred_feat,
|
51 |
+
setup_model,
|
52 |
+
write_transcription,
|
53 |
+
)
|
54 |
+
from nemo.core.config import hydra_runner
|
55 |
+
from nemo.utils import logging
|
56 |
+
|
57 |
+
can_gpu = torch.cuda.is_available()
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class TranscriptionConfig:
|
62 |
+
# Required configs
|
63 |
+
model_path: Optional[str] = None # Path to a .nemo file
|
64 |
+
pretrained_name: Optional[str] = None # Name of a pretrained model
|
65 |
+
audio_dir: Optional[str] = None # Path to a directory which contains audio files
|
66 |
+
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
|
67 |
+
|
68 |
+
# General configs
|
69 |
+
output_filename: Optional[str] = None
|
70 |
+
batch_size: int = 32
|
71 |
+
num_workers: int = 0
|
72 |
+
append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions.
|
73 |
+
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
|
74 |
+
|
75 |
+
# Chunked configs
|
76 |
+
chunk_len_in_secs: float = 1.6 # Chunk length in seconds
|
77 |
+
total_buffer_in_secs: float = 4.0 # Length of buffer (chunk + left and right padding) in seconds
|
78 |
+
model_stride: int = 8 # Model downsampling factor, 8 for Citrinet models and 4 for Conformer models",
|
79 |
+
|
80 |
+
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
|
81 |
+
# device anyway, and do inference on CPU only if CUDA device is not found.
|
82 |
+
# If `cuda` is a negative number, inference will be on CPU only.
|
83 |
+
cuda: Optional[int] = None
|
84 |
+
amp: bool = False
|
85 |
+
audio_type: str = "wav"
|
86 |
+
|
87 |
+
# Recompute model transcription, even if the output folder exists with scores.
|
88 |
+
overwrite_transcripts: bool = True
|
89 |
+
|
90 |
+
|
91 |
+
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
|
92 |
+
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
|
93 |
+
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
|
94 |
+
torch.set_grad_enabled(False)
|
95 |
+
|
96 |
+
if is_dataclass(cfg):
|
97 |
+
cfg = OmegaConf.structured(cfg)
|
98 |
+
|
99 |
+
if cfg.model_path is None and cfg.pretrained_name is None:
|
100 |
+
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
|
101 |
+
if cfg.audio_dir is None and cfg.dataset_manifest is None:
|
102 |
+
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
|
103 |
+
|
104 |
+
filepaths = None
|
105 |
+
manifest = cfg.dataset_manifest
|
106 |
+
if cfg.audio_dir is not None:
|
107 |
+
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
|
108 |
+
manifest = None # ignore dataset_manifest if audio_dir and dataset_manifest both presents
|
109 |
+
|
110 |
+
# setup GPU
|
111 |
+
if cfg.cuda is None:
|
112 |
+
if torch.cuda.is_available():
|
113 |
+
device = [0] # use 0th CUDA device
|
114 |
+
accelerator = 'gpu'
|
115 |
+
else:
|
116 |
+
device = 1
|
117 |
+
accelerator = 'cpu'
|
118 |
+
else:
|
119 |
+
device = [cfg.cuda]
|
120 |
+
accelerator = 'gpu'
|
121 |
+
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
|
122 |
+
logging.info(f"Inference will be done on device : {device}")
|
123 |
+
|
124 |
+
asr_model, model_name = setup_model(cfg, map_location)
|
125 |
+
|
126 |
+
model_cfg = copy.deepcopy(asr_model._cfg)
|
127 |
+
OmegaConf.set_struct(model_cfg.preprocessor, False)
|
128 |
+
# some changes for streaming scenario
|
129 |
+
model_cfg.preprocessor.dither = 0.0
|
130 |
+
model_cfg.preprocessor.pad_to = 0
|
131 |
+
|
132 |
+
if model_cfg.preprocessor.normalize != "per_feature":
|
133 |
+
logging.error("Only EncDecCTCModelBPE models trained with per_feature normalization are supported currently")
|
134 |
+
|
135 |
+
# Disable config overwriting
|
136 |
+
OmegaConf.set_struct(model_cfg.preprocessor, True)
|
137 |
+
|
138 |
+
# setup AMP (optional)
|
139 |
+
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
|
140 |
+
logging.info("AMP enabled!\n")
|
141 |
+
autocast = torch.cuda.amp.autocast
|
142 |
+
else:
|
143 |
+
|
144 |
+
@contextlib.contextmanager
|
145 |
+
def autocast():
|
146 |
+
yield
|
147 |
+
|
148 |
+
# Compute output filename
|
149 |
+
cfg = compute_output_filename(cfg, model_name)
|
150 |
+
|
151 |
+
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
|
152 |
+
if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
|
153 |
+
logging.info(
|
154 |
+
f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
|
155 |
+
f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
|
156 |
+
)
|
157 |
+
return cfg
|
158 |
+
|
159 |
+
asr_model.eval()
|
160 |
+
asr_model = asr_model.to(asr_model.device)
|
161 |
+
|
162 |
+
feature_stride = model_cfg.preprocessor['window_stride']
|
163 |
+
model_stride_in_secs = feature_stride * cfg.model_stride
|
164 |
+
total_buffer = cfg.total_buffer_in_secs
|
165 |
+
chunk_len = float(cfg.chunk_len_in_secs)
|
166 |
+
|
167 |
+
tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs)
|
168 |
+
mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs)
|
169 |
+
logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}")
|
170 |
+
|
171 |
+
frame_asr = FrameBatchASR(
|
172 |
+
asr_model=asr_model, frame_len=chunk_len, total_buffer=cfg.total_buffer_in_secs, batch_size=cfg.batch_size,
|
173 |
+
)
|
174 |
+
|
175 |
+
hyps = get_buffered_pred_feat(
|
176 |
+
frame_asr,
|
177 |
+
chunk_len,
|
178 |
+
tokens_per_chunk,
|
179 |
+
mid_delay,
|
180 |
+
model_cfg.preprocessor,
|
181 |
+
model_stride_in_secs,
|
182 |
+
asr_model.device,
|
183 |
+
manifest,
|
184 |
+
filepaths,
|
185 |
+
)
|
186 |
+
output_filename = write_transcription(hyps, cfg, model_name, filepaths=filepaths, compute_langs=False)
|
187 |
+
logging.info(f"Finished writing predictions to {output_filename}!")
|
188 |
+
|
189 |
+
return cfg
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == '__main__':
|
193 |
+
main() # noqa pylint: disable=no-value-for-parameter
|
speech_to_text_buffered_infer_rnnt.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Script to perform buffered inference using RNNT models.
|
17 |
+
|
18 |
+
Buffered inference is the primary form of audio transcription when the audio segment is longer than 20-30 seconds.
|
19 |
+
This is especially useful for models such as Conformers, which have quadratic time and memory scaling with
|
20 |
+
audio duration.
|
21 |
+
|
22 |
+
The difference between streaming and buffered inference is the chunk size (or the latency of inference).
|
23 |
+
Buffered inference will use large chunk sizes (5-10 seconds) + some additional buffer for context.
|
24 |
+
Streaming inference will use small chunk sizes (0.1 to 0.25 seconds) + some additional buffer for context.
|
25 |
+
|
26 |
+
# Middle Token merge algorithm
|
27 |
+
|
28 |
+
python speech_to_text_buffered_infer_rnnt.py \
|
29 |
+
model_path=null \
|
30 |
+
pretrained_name=null \
|
31 |
+
audio_dir="<remove or path to folder of audio files>" \
|
32 |
+
dataset_manifest="<remove or path to manifest>" \
|
33 |
+
output_filename="<remove or specify output filename>" \
|
34 |
+
total_buffer_in_secs=4.0 \
|
35 |
+
chunk_len_in_secs=1.6 \
|
36 |
+
model_stride=4 \
|
37 |
+
batch_size=32
|
38 |
+
|
39 |
+
# Longer Common Subsequence (LCS) Merge algorithm
|
40 |
+
|
41 |
+
python speech_to_text_buffered_infer_rnnt.py \
|
42 |
+
model_path=null \
|
43 |
+
pretrained_name=null \
|
44 |
+
audio_dir="<remove or path to folder of audio files>" \
|
45 |
+
dataset_manifest="<remove or path to manifest>" \
|
46 |
+
output_filename="<remove or specify output filename>" \
|
47 |
+
total_buffer_in_secs=4.0 \
|
48 |
+
chunk_len_in_secs=1.6 \
|
49 |
+
model_stride=4 \
|
50 |
+
batch_size=32 \
|
51 |
+
merge_algo="lcs" \
|
52 |
+
lcs_alignment_dir=<OPTIONAL: Some path to store the LCS alignments>
|
53 |
+
|
54 |
+
# NOTE:
|
55 |
+
You can use `DEBUG=1 python speech_to_text_buffered_infer_ctc.py ...` to print out the
|
56 |
+
predictions of the model, and ground-truth text if presents in manifest.
|
57 |
+
"""
|
58 |
+
import copy
|
59 |
+
import glob
|
60 |
+
import math
|
61 |
+
import os
|
62 |
+
from dataclasses import dataclass, is_dataclass
|
63 |
+
from typing import Optional
|
64 |
+
|
65 |
+
import torch
|
66 |
+
from omegaconf import OmegaConf, open_dict
|
67 |
+
|
68 |
+
from nemo.collections.asr.parts.utils.streaming_utils import (
|
69 |
+
BatchedFrameASRRNNT,
|
70 |
+
LongestCommonSubsequenceBatchedFrameASRRNNT,
|
71 |
+
)
|
72 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import (
|
73 |
+
compute_output_filename,
|
74 |
+
get_buffered_pred_feat_rnnt,
|
75 |
+
setup_model,
|
76 |
+
write_transcription,
|
77 |
+
)
|
78 |
+
from nemo.core.config import hydra_runner
|
79 |
+
from nemo.utils import logging
|
80 |
+
|
81 |
+
can_gpu = torch.cuda.is_available()
|
82 |
+
|
83 |
+
|
84 |
+
@dataclass
|
85 |
+
class TranscriptionConfig:
|
86 |
+
# Required configs
|
87 |
+
model_path: Optional[str] = None # Path to a .nemo file
|
88 |
+
pretrained_name: Optional[str] = None # Name of a pretrained model
|
89 |
+
audio_dir: Optional[str] = None # Path to a directory which contains audio files
|
90 |
+
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
|
91 |
+
|
92 |
+
# General configs
|
93 |
+
output_filename: Optional[str] = None
|
94 |
+
batch_size: int = 32
|
95 |
+
num_workers: int = 0
|
96 |
+
append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions.
|
97 |
+
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
|
98 |
+
|
99 |
+
# Chunked configs
|
100 |
+
chunk_len_in_secs: float = 1.6 # Chunk length in seconds
|
101 |
+
total_buffer_in_secs: float = 4.0 # Length of buffer (chunk + left and right padding) in seconds
|
102 |
+
model_stride: int = 8 # Model downsampling factor, 8 for Citrinet models and 4 for Conformer models",
|
103 |
+
|
104 |
+
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
|
105 |
+
# device anyway, and do inference on CPU only if CUDA device is not found.
|
106 |
+
# If `cuda` is a negative number, inference will be on CPU only.
|
107 |
+
cuda: Optional[int] = None
|
108 |
+
audio_type: str = "wav"
|
109 |
+
|
110 |
+
# Recompute model transcription, even if the output folder exists with scores.
|
111 |
+
overwrite_transcripts: bool = True
|
112 |
+
|
113 |
+
# Decoding configs
|
114 |
+
max_steps_per_timestep: int = 5 #'Maximum number of tokens decoded per acoustic timestep'
|
115 |
+
stateful_decoding: bool = False # Whether to perform stateful decoding
|
116 |
+
|
117 |
+
# Merge algorithm for transducers
|
118 |
+
merge_algo: Optional[str] = 'middle' # choices=['middle', 'lcs'], choice of algorithm to apply during inference.
|
119 |
+
lcs_alignment_dir: Optional[str] = None # Path to a directory to store LCS algo alignments
|
120 |
+
|
121 |
+
|
122 |
+
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
|
123 |
+
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
|
124 |
+
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
|
125 |
+
torch.set_grad_enabled(False)
|
126 |
+
|
127 |
+
if is_dataclass(cfg):
|
128 |
+
cfg = OmegaConf.structured(cfg)
|
129 |
+
|
130 |
+
if cfg.model_path is None and cfg.pretrained_name is None:
|
131 |
+
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
|
132 |
+
if cfg.audio_dir is None and cfg.dataset_manifest is None:
|
133 |
+
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
|
134 |
+
|
135 |
+
filepaths = None
|
136 |
+
manifest = cfg.dataset_manifest
|
137 |
+
if cfg.audio_dir is not None:
|
138 |
+
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
|
139 |
+
manifest = None # ignore dataset_manifest if audio_dir and dataset_manifest both presents
|
140 |
+
|
141 |
+
# setup GPU
|
142 |
+
if cfg.cuda is None:
|
143 |
+
if torch.cuda.is_available():
|
144 |
+
device = [0] # use 0th CUDA device
|
145 |
+
accelerator = 'gpu'
|
146 |
+
else:
|
147 |
+
device = 1
|
148 |
+
accelerator = 'cpu'
|
149 |
+
else:
|
150 |
+
device = [cfg.cuda]
|
151 |
+
accelerator = 'gpu'
|
152 |
+
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
|
153 |
+
logging.info(f"Inference will be done on device : {device}")
|
154 |
+
|
155 |
+
asr_model, model_name = setup_model(cfg, map_location)
|
156 |
+
|
157 |
+
model_cfg = copy.deepcopy(asr_model._cfg)
|
158 |
+
OmegaConf.set_struct(model_cfg.preprocessor, False)
|
159 |
+
# some changes for streaming scenario
|
160 |
+
model_cfg.preprocessor.dither = 0.0
|
161 |
+
model_cfg.preprocessor.pad_to = 0
|
162 |
+
|
163 |
+
if model_cfg.preprocessor.normalize != "per_feature":
|
164 |
+
logging.error("Only EncDecRNNTBPEModel models trained with per_feature normalization are supported currently")
|
165 |
+
|
166 |
+
# Disable config overwriting
|
167 |
+
OmegaConf.set_struct(model_cfg.preprocessor, True)
|
168 |
+
|
169 |
+
# Compute output filename
|
170 |
+
cfg = compute_output_filename(cfg, model_name)
|
171 |
+
|
172 |
+
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
|
173 |
+
if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
|
174 |
+
logging.info(
|
175 |
+
f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
|
176 |
+
f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
|
177 |
+
)
|
178 |
+
return cfg
|
179 |
+
|
180 |
+
asr_model.freeze()
|
181 |
+
asr_model = asr_model.to(asr_model.device)
|
182 |
+
|
183 |
+
# Change Decoding Config
|
184 |
+
decoding_cfg = asr_model.cfg.decoding
|
185 |
+
with open_dict(decoding_cfg):
|
186 |
+
if cfg.stateful_decoding:
|
187 |
+
decoding_cfg.strategy = "greedy"
|
188 |
+
else:
|
189 |
+
decoding_cfg.strategy = "greedy_batch"
|
190 |
+
decoding_cfg.preserve_alignments = True # required to compute the middle token for transducers.
|
191 |
+
decoding_cfg.fused_batch_size = -1 # temporarily stop fused batch during inference.
|
192 |
+
|
193 |
+
asr_model.change_decoding_strategy(decoding_cfg)
|
194 |
+
|
195 |
+
feature_stride = model_cfg.preprocessor['window_stride']
|
196 |
+
model_stride_in_secs = feature_stride * cfg.model_stride
|
197 |
+
total_buffer = cfg.total_buffer_in_secs
|
198 |
+
chunk_len = float(cfg.chunk_len_in_secs)
|
199 |
+
|
200 |
+
tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs)
|
201 |
+
mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs)
|
202 |
+
logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}")
|
203 |
+
|
204 |
+
if cfg.merge_algo == 'middle':
|
205 |
+
frame_asr = BatchedFrameASRRNNT(
|
206 |
+
asr_model=asr_model,
|
207 |
+
frame_len=chunk_len,
|
208 |
+
total_buffer=cfg.total_buffer_in_secs,
|
209 |
+
batch_size=cfg.batch_size,
|
210 |
+
max_steps_per_timestep=cfg.max_steps_per_timestep,
|
211 |
+
stateful_decoding=cfg.stateful_decoding,
|
212 |
+
)
|
213 |
+
|
214 |
+
elif cfg.merge_algo == 'lcs':
|
215 |
+
frame_asr = LongestCommonSubsequenceBatchedFrameASRRNNT(
|
216 |
+
asr_model=asr_model,
|
217 |
+
frame_len=chunk_len,
|
218 |
+
total_buffer=cfg.total_buffer_in_secs,
|
219 |
+
batch_size=cfg.batch_size,
|
220 |
+
max_steps_per_timestep=cfg.max_steps_per_timestep,
|
221 |
+
stateful_decoding=cfg.stateful_decoding,
|
222 |
+
alignment_basepath=cfg.lcs_alignment_dir,
|
223 |
+
)
|
224 |
+
# Set the LCS algorithm delay.
|
225 |
+
frame_asr.lcs_delay = math.floor(((total_buffer - chunk_len)) / model_stride_in_secs)
|
226 |
+
|
227 |
+
else:
|
228 |
+
raise ValueError("Invalid choice of merge algorithm for transducer buffered inference.")
|
229 |
+
|
230 |
+
hyps = get_buffered_pred_feat_rnnt(
|
231 |
+
asr=frame_asr,
|
232 |
+
tokens_per_chunk=tokens_per_chunk,
|
233 |
+
delay=mid_delay,
|
234 |
+
model_stride_in_secs=model_stride_in_secs,
|
235 |
+
batch_size=cfg.batch_size,
|
236 |
+
manifest=manifest,
|
237 |
+
filepaths=filepaths,
|
238 |
+
)
|
239 |
+
|
240 |
+
output_filename = write_transcription(hyps, cfg, model_name, filepaths=filepaths, compute_langs=False)
|
241 |
+
logging.info(f"Finished writing predictions to {output_filename}!")
|
242 |
+
|
243 |
+
return cfg
|
244 |
+
|
245 |
+
|
246 |
+
if __name__ == '__main__':
|
247 |
+
main() # noqa pylint: disable=no-value-for-parameter
|