Intital commit
Browse files- .gitignore +125 -0
- app.py +177 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
.coverage
|
3 |
+
.coverage.*
|
4 |
+
.cache
|
5 |
+
nosetests.xml
|
6 |
+
coverage.xml
|
7 |
+
*.cover
|
8 |
+
*.py,cover
|
9 |
+
.hypothesis/
|
10 |
+
.pytest_cache/
|
11 |
+
cover/
|
12 |
+
|
13 |
+
# Translations
|
14 |
+
*.mo
|
15 |
+
*.pot
|
16 |
+
|
17 |
+
# Django stuff:
|
18 |
+
*.log
|
19 |
+
local_settings.py
|
20 |
+
db.sqlite3
|
21 |
+
db.sqlite3-journal
|
22 |
+
|
23 |
+
# Flask stuff:
|
24 |
+
instance/
|
25 |
+
.webassets-cache
|
26 |
+
|
27 |
+
# Scrapy stuff:
|
28 |
+
.scrapy
|
29 |
+
|
30 |
+
# Sphinx documentation
|
31 |
+
docs/_build/
|
32 |
+
|
33 |
+
# PyBuilder
|
34 |
+
.pybuilder/
|
35 |
+
target/
|
36 |
+
|
37 |
+
# Jupyter Notebook
|
38 |
+
.ipynb_checkpoints
|
39 |
+
|
40 |
+
# IPython
|
41 |
+
profile_default/
|
42 |
+
ipython_config.py
|
43 |
+
|
44 |
+
# pyenv
|
45 |
+
# For a library or package, you might want to ignore these files since the code is
|
46 |
+
# intended to run in multiple environments; otherwise, check them in:
|
47 |
+
# .python-version
|
48 |
+
|
49 |
+
# pipenv
|
50 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
51 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
52 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
53 |
+
# install all needed dependencies.
|
54 |
+
#Pipfile.lock
|
55 |
+
|
56 |
+
# poetry
|
57 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
58 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
59 |
+
# commonly ignored for libraries.
|
60 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
61 |
+
#poetry.lock
|
62 |
+
|
63 |
+
# pdm
|
64 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
65 |
+
#pdm.lock
|
66 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
67 |
+
# in version control.
|
68 |
+
# https://pdm.fming.dev/#use-with-ide
|
69 |
+
.pdm.toml
|
70 |
+
|
71 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
72 |
+
__pypackages__/
|
73 |
+
|
74 |
+
# Celery stuff
|
75 |
+
celerybeat-schedule
|
76 |
+
celerybeat.pid
|
77 |
+
|
78 |
+
# SageMath parsed files
|
79 |
+
*.sage.py
|
80 |
+
|
81 |
+
# Environments
|
82 |
+
.env
|
83 |
+
.venv
|
84 |
+
env/
|
85 |
+
venv/
|
86 |
+
ENV/
|
87 |
+
env.bak/
|
88 |
+
venv.bak/
|
89 |
+
|
90 |
+
# Spyder project settings
|
91 |
+
.spyderproject
|
92 |
+
.spyproject
|
93 |
+
|
94 |
+
# Rope project settings
|
95 |
+
.ropeproject
|
96 |
+
|
97 |
+
# mkdocs documentation
|
98 |
+
/site
|
99 |
+
|
100 |
+
# mypy
|
101 |
+
.mypy_cache/
|
102 |
+
.dmypy.json
|
103 |
+
dmypy.json
|
104 |
+
|
105 |
+
# Pyre type checker
|
106 |
+
.pyre/
|
107 |
+
|
108 |
+
# pytype static type analyzer
|
109 |
+
.pytype/
|
110 |
+
|
111 |
+
# Cython debug symbols
|
112 |
+
cython_debug/
|
113 |
+
|
114 |
+
# PyCharm
|
115 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
116 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
117 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
118 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
119 |
+
#.idea/
|
120 |
+
|
121 |
+
# VS Code
|
122 |
+
.vscode/
|
123 |
+
|
124 |
+
# pycache
|
125 |
+
__pycache__/
|
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
5 |
+
from sklearn.linear_model import LogisticRegression
|
6 |
+
from sklearn.naive_bayes import GaussianNB
|
7 |
+
|
8 |
+
|
9 |
+
def choose_model(model):
|
10 |
+
if model == "Logistic Regression":
|
11 |
+
return LogisticRegression(max_iter=1000, random_state=123)
|
12 |
+
elif model == "Random Forest":
|
13 |
+
return RandomForestClassifier(n_estimators=100, random_state=123)
|
14 |
+
elif model == "Gaussian Naive Bayes":
|
15 |
+
return GaussianNB()
|
16 |
+
else:
|
17 |
+
raise ValueError("Model is not supported.")
|
18 |
+
|
19 |
+
|
20 |
+
def get_proba_plots(
|
21 |
+
model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight
|
22 |
+
):
|
23 |
+
clf1 = choose_model(model_1)
|
24 |
+
clf2 = choose_model(model_2)
|
25 |
+
clf3 = choose_model(model_3)
|
26 |
+
X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
|
27 |
+
y = np.array([1, 1, 2, 2])
|
28 |
+
|
29 |
+
eclf = VotingClassifier(
|
30 |
+
estimators=[("clf1", clf1), ("clf2", clf2), ("clf3", clf3)],
|
31 |
+
voting="soft",
|
32 |
+
weights=[model_1_weight, model_2_weight, model_3_weight],
|
33 |
+
)
|
34 |
+
|
35 |
+
# predict class probabilities for all classifiers
|
36 |
+
probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)]
|
37 |
+
|
38 |
+
# get class probabilities for the first sample in the dataset
|
39 |
+
class1_1 = [pr[0, 0] for pr in probas]
|
40 |
+
class2_1 = [pr[0, 1] for pr in probas]
|
41 |
+
|
42 |
+
# plotting
|
43 |
+
|
44 |
+
N = 4 # number of groups
|
45 |
+
ind = np.arange(N) # group positions
|
46 |
+
width = 0.35 # bar width
|
47 |
+
|
48 |
+
fig, ax = plt.subplots()
|
49 |
+
|
50 |
+
# bars for classifier 1-3
|
51 |
+
p1 = ax.bar(
|
52 |
+
ind, np.hstack(([class1_1[:-1], [0]])), width, color="green", edgecolor="k"
|
53 |
+
)
|
54 |
+
p2 = ax.bar(
|
55 |
+
ind + width,
|
56 |
+
np.hstack(([class2_1[:-1], [0]])),
|
57 |
+
width,
|
58 |
+
color="lightgreen",
|
59 |
+
edgecolor="k",
|
60 |
+
)
|
61 |
+
|
62 |
+
# bars for VotingClassifier
|
63 |
+
ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color="blue", edgecolor="k")
|
64 |
+
ax.bar(
|
65 |
+
ind + width, [0, 0, 0, class2_1[-1]], width, color="steelblue", edgecolor="k"
|
66 |
+
)
|
67 |
+
|
68 |
+
# plot annotations
|
69 |
+
plt.axvline(2.8, color="k", linestyle="dashed")
|
70 |
+
ax.set_xticks(ind + width)
|
71 |
+
ax.set_xticklabels(
|
72 |
+
[
|
73 |
+
f"{model_2}\nweight {model_1_weight}",
|
74 |
+
f"{model_1}\nweight {model_2_weight}",
|
75 |
+
f"{model_3}\nweight {model_3_weight}",
|
76 |
+
"VotingClassifier\n(average probabilities)",
|
77 |
+
],
|
78 |
+
rotation=40,
|
79 |
+
ha="right",
|
80 |
+
)
|
81 |
+
plt.ylim([0, 1])
|
82 |
+
plt.title("Class probabilities for sample 1 by different classifiers")
|
83 |
+
plt.legend([p1[0], p2[0]], ["class 1", "class 2"], loc="upper left")
|
84 |
+
plt.tight_layout()
|
85 |
+
plt.show()
|
86 |
+
return fig
|
87 |
+
|
88 |
+
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
with gr.Row():
|
91 |
+
model_1 = gr.Dropdown(
|
92 |
+
[
|
93 |
+
"Logistic Regression",
|
94 |
+
"Random Forest",
|
95 |
+
"Gaussian Naive Bayes",
|
96 |
+
],
|
97 |
+
label="Model 1",
|
98 |
+
value="Logistic Regression",
|
99 |
+
)
|
100 |
+
model_2 = gr.Dropdown(
|
101 |
+
[
|
102 |
+
"Logistic Regression",
|
103 |
+
"Random Forest",
|
104 |
+
"Gaussian Naive Bayes",
|
105 |
+
],
|
106 |
+
label="Model 2",
|
107 |
+
value="Random Forest",
|
108 |
+
)
|
109 |
+
model_3 = gr.Dropdown(
|
110 |
+
[
|
111 |
+
"Logistic Regression",
|
112 |
+
"Random Forest",
|
113 |
+
"Gaussian Naive Bayes",
|
114 |
+
],
|
115 |
+
label="Model 3",
|
116 |
+
value="Gaussian Naive Bayes",
|
117 |
+
)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
model_1_weight = gr.Slider(
|
121 |
+
minimum=1, maximum=10, value=1, label="Model 1 Weight", step=1
|
122 |
+
)
|
123 |
+
model_2_weight = gr.Slider(
|
124 |
+
minimum=1, maximum=10, value=1, label="Model 2 Weight", step=1
|
125 |
+
)
|
126 |
+
model_3_weight = gr.Slider(
|
127 |
+
minimum=1, maximum=10, value=5, label="Model 3 Weight", step=1
|
128 |
+
)
|
129 |
+
|
130 |
+
proba_plots = gr.Plot()
|
131 |
+
|
132 |
+
model_1.change(
|
133 |
+
get_proba_plots,
|
134 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
135 |
+
proba_plots,
|
136 |
+
queue=False,
|
137 |
+
)
|
138 |
+
model_2.change(
|
139 |
+
get_proba_plots,
|
140 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
141 |
+
proba_plots,
|
142 |
+
queue=False,
|
143 |
+
)
|
144 |
+
model_3.change(
|
145 |
+
get_proba_plots,
|
146 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
147 |
+
proba_plots,
|
148 |
+
queue=False,
|
149 |
+
)
|
150 |
+
model_1_weight.change(
|
151 |
+
get_proba_plots,
|
152 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
153 |
+
proba_plots,
|
154 |
+
queue=False,
|
155 |
+
)
|
156 |
+
model_2_weight.change(
|
157 |
+
get_proba_plots,
|
158 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
159 |
+
proba_plots,
|
160 |
+
queue=False,
|
161 |
+
)
|
162 |
+
model_3_weight.change(
|
163 |
+
get_proba_plots,
|
164 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
165 |
+
proba_plots,
|
166 |
+
queue=False,
|
167 |
+
)
|
168 |
+
|
169 |
+
demo.load(
|
170 |
+
get_proba_plots,
|
171 |
+
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight],
|
172 |
+
proba_plots,
|
173 |
+
queue=False,
|
174 |
+
)
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
scikit-learn==1.2.2
|
2 |
+
matplotlib==3.7.1
|