summary / data_utils.py
skf15963's picture
Duplicate from fclong/summary
fb238e8
# -*- coding: utf-8 -*-
import re
import six
import unicodedata
import torch
import rouge
import numpy as np
import random
# from fengshen.examples.pegasus.pegasus_utils import text_segmentate
import sys
sys.path.append('../../../')
rouge = rouge.Rouge()
is_py2 = six.PY2
if not is_py2:
basestring = str
def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF)
or (cp >= 0x20000 and cp <= 0x2A6DF)
or (cp >= 0x2A700 and cp <= 0x2B73F)
or (cp >= 0x2B740 and cp <= 0x2B81F)
or (cp >= 0x2B820 and cp <= 0x2CEAF)
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F)):
return True
return False
def _is_whitespace(char):
"""Checks whether `char` is a whitespace character."""
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `char` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `char` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (
cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def is_string(s):
"""判断是否是字符串
"""
return isinstance(s, basestring)
def is_stopwords(word, stopwords):
if word in stopwords:
return True
else:
return False
def text_segmentate(text):
en_seg_pattern = '((?:\\!|\\?|\\.|\\n)+(?:\\s)+)'
ch_seg_pattern = '((?:?|!|。|\\n)+)'
try:
text = re.sub(en_seg_pattern, r'\1[SEP]', text)
# print("sub text: ", text)
except Exception as e:
print("input: ", text)
raise e
text = re.sub(ch_seg_pattern, r'\1[SEP]', text)
# print("sub ch text: ", text)
text_list = text.split("[SEP]")
text_list = list(filter(lambda x: len(x) != 0, text_list))
return text_list
def load_stopwords(stopwords_path):
stopwords_dict = {}
with open(stopwords_path, "r") as rf:
for line in rf:
line = line.strip()
if line not in stopwords_dict:
stopwords_dict[line] = 0
else:
pass
return stopwords_dict
def text_process(text, max_length):
"""分割文本
"""
texts = text_segmentate(text)
result, length = [], 0
for text in texts:
if length + len(text) > max_length * 1.3 and len(result) >= 3:
yield result
result, length = [], 0
result.append(text)
length += len(text)
if result and len(result) >= 3:
yield result
def text_process_split_long_content(text, max_length):
"""分割长文本
"""
texts = text_segmentate(text)
result, sentence_num = "", 0
for text in texts:
if len(text) > 500:
if len(result) > 300 and sentence_num >= 3:
yield result
result, sentence_num = "", 0
else:
result, sentence_num = "", 0
continue
else:
if len(result) + len(text) > max_length * 1.1 and sentence_num >= 3:
yield result
result, sentence_num = "", 0
result += text
sentence_num += 1
if result and sentence_num >= 3:
yield result
def gather_join(texts, idxs):
"""取出对应的text,然后拼接起来
"""
return ''.join([texts[i] for i in idxs])
def gather_join_f1(texts_token, idsx):
join_texts = []
for id in idsx:
join_texts.extend(texts_token[id])
return join_texts
def compute_rouge(source, target):
"""计算rouge-1、rouge-2、rouge-l
"""
source, target = ' '.join(source), ' '.join(target)
try:
scores = rouge.get_scores(hyps=source, refs=target)
return {
'rouge-1': scores[0]['rouge-1']['f'],
'rouge-2': scores[0]['rouge-2']['f'],
'rouge-l': scores[0]['rouge-l']['f'],
}
except ValueError:
return {
'rouge-1': 0.0,
'rouge-2': 0.0,
'rouge-l': 0.0,
}
def remove_stopwords(texts, stopwords_dict):
for i, text in enumerate(texts):
texts[i] = list(filter(lambda x: x not in stopwords_dict, text))
return texts
def pseudo_summary_f1(texts,
stopwords,
tokenizer,
max_length,
rouge_strategy="rouge-l"):
"""构建伪标签摘要数据集
"""
summary_rate = 0.25
max_length = max_length - 1
texts_tokens = []
sentece_idxs_vec = []
for text in texts:
if len(texts) == 0:
continue
try:
ids = tokenizer.encode(text.strip())[:-1]
except ValueError:
print("error, input : ", text)
raise ValueError
sentece_idxs_vec.append(ids)
tokens = [tokenizer._convert_id_to_token(token) for token in ids]
texts_tokens.append(tokens)
texts_tokens_rm = remove_stopwords(texts_tokens, stopwords)
source_idxs, target_idxs = list(range(len(texts))), []
assert len(texts_tokens) == len(texts)
# truncate_index = 0
while True:
sims = []
for i in source_idxs:
new_source_idxs = [j for j in source_idxs if j != i]
new_target_idxs = sorted(target_idxs + [i])
new_source = gather_join_f1(texts_tokens_rm, new_source_idxs)
new_target = gather_join_f1(texts_tokens_rm, new_target_idxs)
sim = compute_rouge(new_source, new_target)[rouge_strategy]
sims.append(sim)
new_idx = source_idxs[np.argmax(sims)]
del sims
source_idxs.remove(new_idx)
target_idxs = sorted(target_idxs + [new_idx])
source = gather_join(texts, source_idxs)
target = gather_join(texts, target_idxs)
try:
if (len(source_idxs) == 1
or 1.0 * len(target) / len(source) > summary_rate):
break
except ZeroDivisionError as e:
print(e.meesage)
print(texts)
print("source: ", source)
print("target: ", target)
if len(source) < len(target):
source, target = target, source
source_idxs, target_idxs = target_idxs, source_idxs
return sentece_idxs_vec, source, target, source_idxs, target_idxs
def get_input_mask(sentence_id_vec, indexs):
target_idxs = []
input_idxs = []
kMaskSentenceTokenId = 2
kEosTokenId = 1
mask_sentence_options_cumulative_prob = [0.9, 0.9, 1, 1]
for index in indexs:
target_idxs.extend(sentence_id_vec[index])
choice = random.uniform(0, 1)
if choice < mask_sentence_options_cumulative_prob[0]:
# print("mask index: ", index)
sentence_id_vec[index] = [kMaskSentenceTokenId]
elif choice < mask_sentence_options_cumulative_prob[1]:
# print("replace index: ", index)
replace_id = random.randint(0, len(sentence_id_vec))
sentence_id_vec[index] = sentence_id_vec[replace_id]
elif choice < mask_sentence_options_cumulative_prob[2]:
pass
else:
sentence_id_vec[index] = []
target_idxs.append(kEosTokenId)
# print(sentence_id_vec)
for index, sentence_id in enumerate(sentence_id_vec):
# print(index, sentence_id)
if len(sentence_id) == 0:
continue
input_idxs.extend(sentence_id_vec[index])
input_idxs.append(kEosTokenId)
return input_idxs, target_idxs
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int,
decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def padding_to_maxlength(ids, max_length, pad_id):
cur_len = len(ids)
len_diff = max_length - cur_len
return ids + [pad_id] * len_diff, [1] * cur_len + [0] * len_diff