RFAA / app.py
simonduerr's picture
Update app.py
dce5201 verified
"""
Input UI for RoseTTAfold All Atom
using two custom gradio components: gradio_molecule3d and gradio_cofoldinginput
"""
import gradio as gr
from gradio_cofoldinginput import CofoldingInput
from gradio_molecule3d import Molecule3D
import json
import yaml
from openbabel import openbabel
import zipfile
import tempfile
import os
from Bio.PDB import PDBParser, PDBIO
baseconfig = """job_name: "structure_prediction"
output_path: ""
checkpoint_path: RFAA_paper_weights.pt
database_params:
sequencedb: ""
hhdb: "pdb100_2021Mar03/pdb100_2021Mar03"
command: make_msa.sh
num_cpus: 4
mem: 64
protein_inputs: null
na_inputs: null
sm_inputs: null
covale_inputs: null
residue_replacement: null
chem_params:
use_phospate_frames_for_NA: True
use_cif_ordering_for_trp: True
loader_params:
n_templ: 4
MAXLAT: 128
MAXSEQ: 1024
MAXCYCLE: 4
BLACK_HOLE_INIT: False
seqid: 150.0
legacy_model_param:
n_extra_block: 4
n_main_block: 32
n_ref_block: 4
n_finetune_block: 0
d_msa: 256
d_msa_full: 64
d_pair: 192
d_templ: 64
n_head_msa: 8
n_head_pair: 6
n_head_templ: 4
d_hidden_templ: 64
p_drop: 0.0
use_chiral_l1: True
use_lj_l1: True
use_atom_frames: True
recycling_type: "all"
use_same_chain: True
lj_lin: 0.75
SE3_param:
num_layers: 1
num_channels: 32
num_degrees: 2
l0_in_features: 64
l0_out_features: 64
l1_in_features: 3
l1_out_features: 2
num_edge_features: 64
n_heads: 4
div: 4
SE3_ref_param:
num_layers: 2
num_channels: 32
num_degrees: 2
l0_in_features: 64
l0_out_features: 64
l1_in_features: 3
l1_out_features: 2
num_edge_features: 64
n_heads: 4
div: 4
"""
def convert_format(input_file, jobname, chain, deleteIndexes, attachmentIndex):
conv = openbabel.OBConversion()
conv.SetInAndOutFormats('cdjson', 'sdf')
# Add options
conv.AddOption("c", openbabel.OBConversion.OUTOPTIONS, "1")
with open(f"{jobname}_sm_{chain}.json", "w+") as fp:
fp.write(input_file)
mol = openbabel.OBMol()
conv.ReadFile(mol, f"{jobname}_sm_{chain}.json")
deleted_count = 0
# delete atoms in delete indexes
for index in sorted(deleteIndexes, reverse=True):
if index < attachmentIndex:
deleted_count += 1
atom = mol.GetAtom(index)
mol.DeleteAtom(atom)
attachmentIndex -= deleted_count
conv.WriteFile(mol, f"{jobname}_sm_{chain}.sdf")
return attachmentIndex
def prepare_input(input, jobname, baseconfig, hard_case):
input_categories = {"protein":"protein_inputs", "DNA":"na_inputs","RNA":"na_inputs", "ligand":"sm_inputs"}
# convert input to yaml format
yaml_dict = {"defaults":["base"], "job_name":jobname, "output_path": jobname}
list_of_input_files = []
if len(input["chains"]) == 0:
raise gr.Error("At least one chain must be provided")
for chain in input["chains"]:
if input_categories[chain["class"]] not in yaml_dict.keys():
yaml_dict[input_categories[chain["class"]]] = {}
if input_categories[chain["class"]] in ["protein_inputs", "na_inputs"]:
#write fasta
with open(f"{jobname}_{chain['chain']}.fasta", "w+") as fp:
fp.write(f">chain A\n{chain['sequence']}")
if input_categories[chain["class"]] == "na_inputs":
entry = {"input_type":chain["class"].lower(), "fasta":f"{jobname}/{jobname}_{chain['chain']}.fasta"}
else:
entry = {"fasta_file": f"{jobname}/{jobname}_{chain['chain']}.fasta"}
list_of_input_files.append(f"{jobname}_{chain['chain']}.fasta")
yaml_dict[input_categories[chain["class"]]][chain['chain']] = entry
if input_categories[chain['class']] == "sm_inputs":
if "smiles" in chain.keys():
entry = {"input_type": "smiles", "input": chain["smiles"]}
elif "sdf" in chain.keys():
# write to file
with open(f"{jobname}_sm_{chain['chain']}.sdf", "w+") as fp:
fp.write(chain["sdf"])
list_of_input_files.append(f"{jobname}_sm_{chain['chain']}.sdf")
entry = {"input_type": "sdf", "input": f"{jobname}/{jobname}_sm_{chain['chain']}.sdf"}
elif "name" in chain.keys():
list_of_input_files.append(f"metal_sdf/{chain['name']}_ideal.sdf")
entry = {"input_type": "sdf", "input": f"{jobname}/{chain['name']}_ideal.sdf"}
yaml_dict["sm_inputs"][chain['chain']] = entry
covale_inputs = []
if len(input["covMods"])>0:
yaml_dict["covale_inputs"]=""
for covMod in input["covMods"]:
new_attachment_index = covMod["attachmentIndex"]
if len(covMod["deleteIndexes"])>0:
new_attachment_index = convert_format(covMod["mol"],jobname, covMod["ligand"], covMod["deleteIndexes"], covMod["attachmentIndex"])
chirality_ligand = "null"
chirality_protein = "null"
if covMod["protein_symmetry"] in ["CW", "CCW"]:
chirality_protein = covMod["protein_symmetry"]
if covMod["ligand_symmetry"] in ["CW", "CCW"]:
chirality_ligand = covMod["ligand_symmetry"]
covale_inputs.append(((covMod[ "protein"], covMod["residue"], covMod["atom"]), (covMod["ligand"], new_attachment_index), (chirality_protein, chirality_ligand)))
if len(input["covMods"])>0:
yaml_dict["covale_inputs"] = json.dumps(json.dumps(covale_inputs))[1:-1].replace("'", "\"")
if hard_case:
yaml_dict["loader_params"]= {}
yaml_dict["loader_params"]["MAXCYCLE"] = 10
# write yaml to tmp
with open(f"/tmp/{jobname}.yaml", "w+") as fp:
# need to convert single quotes to double quotes
fp.write(yaml.dump(yaml_dict).replace("'", "\""))
# write baseconfig
with open(f"/tmp/base.yaml", "w+") as fp:
fp.write(baseconfig)
list_of_input_files.append(f"/tmp/{jobname}.yaml")
list_of_input_files.append(f"/tmp/base.yaml")
# convert dictionary to YAML
with zipfile.ZipFile(os.path.join("/tmp/", f"{jobname}.zip"), 'w') as zip_archive:
for file in set(list_of_input_files):
zip_archive.write(file, arcname= os.path.join(jobname,os.path.basename(file)),compress_type=zipfile.ZIP_DEFLATED)
return yaml.dump(yaml_dict).replace("'", "\""),os.path.join("/tmp/", f"{jobname}.zip")
def convert_bfactors(pdb_path):
with open(pdb_path, 'r') as f:
lines = f.readlines()
for i,line in enumerate(lines):
# multiple each bfactor by 100
if line[0:6] == 'ATOM ' or line[0:6] == 'HETATM':
bfactor = float(line[60:66])
bfactor *= 100
line = line[:60] + f'{bfactor:6.2f}' + line[66:]
lines[i] = line
with open(pdb_path.replace(".pdb", "_processed.pdb"), 'w') as f:
f.write(''.join(lines))
def run_rf2aa(jobname, zip_archive):
current_dir = os.getcwd()
try:
with zipfile.ZipFile(zip_archive, 'r') as zip_ref:
zip_ref.extractall(os.path.join(current_dir))
os.system(f"python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path {current_dir}/{jobname}")
# scale pLDDT to 0-100 range in pdb output file
convert_bfactors(f"{current_dir}/{jobname}/{jobname}.pdb")
except Exception as e:
raise gr.Error(f"Error running RFAA: {e}")
return f"{current_dir}/{jobname}/{jobname}_processed.pdb"
def predict(input, jobname, dry_run, baseconfig, hard_case):
yaml_input, zip_archive = prepare_input(input, jobname, baseconfig, hard_case)
reps = []
for chain in input["chains"]:
if chain["class"] in ["protein", "RNA", "DNA"]:
reps.append({
"model": 0,
"chain": chain["chain"],
"resname": "",
"style": "cartoon",
"color": "alphafold",
"residue_range": "",
"around": 0,
"byres": False
})
elif chain["class"] == "ligand" and "name" not in chain.keys():
reps.append({
"model": 0,
"chain": chain["chain"],
"resname": "LG1",
"style": "stick",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False
})
else:
reps.append({
"model": 0,
"chain": chain["chain"],
"resname": "LG1",
"style": "sphere",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False
})
if dry_run:
return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True), gr.Markdown(f"""You can run your RFAA job using the following command: <pre>python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path absolute/path/to/unzipped/{jobname}</pre>""", visible=True), Molecule3D(visible=False)
else:
pdb_file = run_rf2aa(jobname, zip_archive)
return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True),gr.Markdown(visible=False), Molecule3D(pdb_file,reps=reps,visible=True)
with gr.Blocks() as demo:
gr.Markdown("# RoseTTAFold All Atom UI")
gr.Markdown("""This UI allows you to generate input files for RoseTTAFold All Atom (RFAA) using the CofoldingInput widget. The input files can be used to run RFAA on your local machine. <br />
If you launch the UI directly on your local machine you can also directly run the RFAA prediction. <br />
More information in the official GitHub repository: [baker-laboratory/RoseTTAFold-All-Atom](https://github.com/baker-laboratory/RoseTTAFold-All-Atom)
""")
jobname = gr.Textbox("job1", label="Job Name")
with gr.Tab("Input"):
inp=CofoldingInput(label="Input")
hard_case = gr.Checkbox(False, label="Hard case (increase MAXCYCLE to 10)")
# only allow running the predictions if local
if os.environ.get("SPACE_HOST")!=None:
dry_run = gr.Checkbox(True, label="Only generate input files (dry run)", interactive=False)
else:
dry_run = gr.Checkbox(True, label="Only generate input files (dry run)")
with gr.Tab("Base config"):
base_config = gr.Code(baseconfig, label="Base config")
btn = gr.Button("Run")
config_file = gr.Code(label="YAML Hydra config for RFAA", visible=True)
runfiles = gr.File(label="files to run RFAA", visible=False)
instructions = gr.Markdown(visible=False)
out = Molecule3D(visible=False)
btn.click(predict, inputs=[inp, jobname, dry_run, base_config, hard_case], outputs=[config_file, runfiles, instructions, out])
if __name__ == "__main__":
demo.launch(share=True)