Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
from diffusers import DiffusionPipeline | |
from transformers import T5EncoderModel, CLIPTextModelWithProjection | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
text_encoder_repo = "silveroxides/CLIP_L_Fur" | |
text_encoder_2_repo = "silveroxides/SeaArtFurryCLIP_G" | |
text_encoder_3_repo = "silveroxides/t5xxl_flan_enc" | |
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
else: | |
torch_dtype = torch.float32 | |
text_encoder = CLIPTextModelWithProjection.from_pretrained(text_encoder_repo, torch_dtype=torch_dtype) | |
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(text_encoder_2_repo, torch_dtype=torch_dtype) | |
text_encoder_3 = T5EncoderModel.from_pretrained(text_encoder_3_repo, torch_dtype=torch_dtype) | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1216 | |
def infer( | |
prompt, | |
negative_prompt="", | |
seed=42, | |
randomize_seed=False, | |
width=1024, | |
height=1024, | |
guidance_scale=0.0, | |
num_inference_steps=4, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = [ | |
"A capybara wearing a suit holding a sign that reads Hello World", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # [Stable Diffusion 3.5 Large Turbo (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large-turbo)") | |
gr.Markdown("Space for testing alternative text encoders with SD 3.5 L Turbo") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
max_lines=4, | |
lines=4, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=2, | |
lines=2, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=7.5, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |