Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import string | |
import gradio as gr | |
import PIL.Image | |
import spaces | |
import torch | |
from transformers import AutoProcessor, BitsAndBytesConfig, Blip2ForConditionalGeneration | |
from transformers import BitsAndBytesConfig | |
bnb_config = BitsAndBytesConfig( | |
load_in_8bit=True, | |
) | |
DESCRIPTION = "# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
MODEL_ID_OPT_2_7B = "Salesforce/blip2-opt-2.7b" | |
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b" | |
MODEL_ID_FLAN_T5_XL = "Salesforce/blip2-flan-t5-xl" | |
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl" | |
MODEL_ID_FLAN_T5_XL_COCO = "Salesforce/blip2-flan-t5-xl-coco" | |
MODEL_ID = MODEL_ID_FLAN_T5_XL_COCO | |
assert MODEL_ID in [MODEL_ID_OPT_2_7B, MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XL, MODEL_ID_FLAN_T5_XXL, MODEL_ID_FLAN_T5_XL_COCO] | |
if torch.cuda.is_available(): | |
processor = AutoProcessor.from_pretrained(MODEL_ID) | |
model = Blip2ForConditionalGeneration.from_pretrained(MODEL_ID, device_map="auto", quantization_config=bnb_config) | |
def generate_caption( | |
image: PIL.Image.Image, | |
decoding_method: str = "Nucleus sampling", | |
temperature: float = 1.0, | |
length_penalty: float = 1.0, | |
repetition_penalty: float = 1.5, | |
max_length: int = 50, | |
min_length: int = 1, | |
num_beams: int = 5, | |
top_p: float = 0.9, | |
) -> str: | |
inputs = processor(images=[image], return_tensors="pt").to(device, dtype=torch.float16) | |
generated_ids = model.generate( | |
pixel_values=inputs.pixel_values, | |
do_sample=decoding_method == "Nucleus sampling", | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
top_p=top_p, | |
) | |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
return result | |
def generate_captions( | |
images: list[PIL.Image.Image], | |
decoding_method: str = "Nucleus sampling", | |
temperature: float = 1.0, | |
length_penalty: float = 1.0, | |
repetition_penalty: float = 1.5, | |
max_length: int = 50, | |
min_length: int = 1, | |
num_beams: int = 5, | |
top_p: float = 0.9, | |
) -> list[str]: | |
inputs = processor(images=images, return_tensors="pt").to(device, dtype=torch.float16) | |
generated_ids = model.generate( | |
pixel_values=inputs.pixel_values, | |
do_sample=decoding_method == "Nucleus sampling", | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
top_p=top_p, | |
) | |
results = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
return [result.strip() for result in results] | |
def answer_question( | |
image: PIL.Image.Image, | |
prompt: str, | |
decoding_method: str = "Nucleus sampling", | |
temperature: float = 1.0, | |
length_penalty: float = 1.0, | |
repetition_penalty: float = 1.5, | |
max_length: int = 50, | |
min_length: int = 1, | |
num_beams: int = 5, | |
top_p: float = 0.9, | |
) -> str: | |
inputs = processor(images=[image], text=prompt, return_tensors="pt").to(device, dtype=torch.float16) | |
generated_ids = model.generate( | |
**inputs, | |
do_sample=decoding_method == "Nucleus sampling", | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
top_p=top_p, | |
) | |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
return result | |
def postprocess_output(output: str) -> str: | |
if output and output[-1] not in string.punctuation: | |
output += "." | |
return output | |
def chat( | |
image: PIL.Image.Image, | |
text: str, | |
decoding_method: str = "Nucleus sampling", | |
temperature: float = 1.0, | |
length_penalty: float = 1.0, | |
repetition_penalty: float = 1.5, | |
max_length: int = 50, | |
min_length: int = 1, | |
num_beams: int = 5, | |
top_p: float = 0.9, | |
history_orig: list[str] = [], | |
history_qa: list[str] = [], | |
) -> tuple[list[tuple[str, str]], list[str], list[str]]: | |
history_orig.append(text) | |
text_qa = f"Question: {text} Answer:" | |
history_qa.append(text_qa) | |
prompt = " ".join(history_qa) | |
output = answer_question( | |
image=image, | |
prompt=prompt, | |
decoding_method=decoding_method, | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
top_p=top_p, | |
) | |
output = postprocess_output(output) | |
history_orig.append(output) | |
history_qa.append(output) | |
chat_val = list(zip(history_orig[0::2], history_orig[1::2])) | |
return chat_val, history_orig, history_qa | |
examples = [ | |
[ | |
"images/house.png", | |
"How could someone get out of the house?", | |
], | |
[ | |
"images/flower.jpg", | |
"What is this flower and where is it's origin?", | |
], | |
[ | |
"images/pizza.jpg", | |
"What are steps to cook it?", | |
], | |
[ | |
"images/sunset.jpg", | |
"Here is a romantic message going along the photo:", | |
], | |
[ | |
"images/forbidden_city.webp", | |
"In what dynasties was this place built?", | |
], | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Tabs(): | |
with gr.Tab(label="Single Image"): | |
with gr.Group(): | |
image = gr.Image(type="pil") | |
with gr.Tabs(): | |
with gr.Tab(label="Image Captioning"): | |
caption_button = gr.Button("Caption it!") | |
caption_output = gr.Textbox(label="Caption Output", show_label=False, container=False) | |
with gr.Tab(label="Visual Question Answering"): | |
chatbot = gr.Chatbot(label="VQA Chat", show_label=False) | |
history_orig = gr.State(value=[]) | |
history_qa = gr.State(value=[]) | |
vqa_input = gr.Text(label="Chat Input", show_label=False, max_lines=1, container=False) | |
with gr.Row(): | |
clear_chat_button = gr.Button("Clear") | |
chat_button = gr.Button("Submit", variant="primary") | |
with gr.Accordion(label="Advanced settings", open=False): | |
text_decoding_method = gr.Radio( | |
label="Text Decoding Method", | |
choices=["Beam search", "Nucleus sampling"], | |
value="Nucleus sampling", | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
info="Used with nucleus sampling.", | |
minimum=0.5, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
length_penalty = gr.Slider( | |
label="Length Penalty", | |
info="Set to larger for longer sequence, used with beam search.", | |
minimum=-1.0, | |
maximum=2.0, | |
step=0.2, | |
value=1.0, | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition Penalty", | |
info="Larger value prevents repetition.", | |
minimum=1.0, | |
maximum=5.0, | |
step=0.5, | |
value=1.5, | |
) | |
max_length = gr.Slider( | |
label="Max Length", | |
minimum=20, | |
maximum=512, | |
step=1, | |
value=50, | |
) | |
min_length = gr.Slider( | |
label="Minimum Length", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=1, | |
) | |
num_beams = gr.Slider( | |
label="Number of Beams", | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=5, | |
) | |
top_p = gr.Slider( | |
label="Top P", | |
info="Used with nucleus sampling.", | |
minimum=0.5, | |
maximum=1.0, | |
step=0.1, | |
value=0.9, | |
) | |
with gr.Tab(label="Batch Image"): | |
with gr.Group(): | |
batch_images = gr.Files(label="Batch Process", interactive=True, elem_id="extras_image_batch") | |
with gr.Tabs(): | |
with gr.Tab(label="Image Captioning"): | |
batch_caption_button = gr.Button("Caption it!") | |
batch_caption_output = gr.JSON(label="Caption Output") | |
with gr.Accordion(label="Advanced settings", open=False): | |
text_decoding_method = gr.Radio( | |
label="Text Decoding Method", | |
choices=["Beam search", "Nucleus sampling"], | |
value="Nucleus sampling", | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
info="Used with nucleus sampling.", | |
minimum=0.5, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
length_penalty = gr.Slider( | |
label="Length Penalty", | |
info="Set to larger for longer sequence, used with beam search.", | |
minimum=-1.0, | |
maximum=2.0, | |
step=0.2, | |
value=1.0, | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition Penalty", | |
info="Larger value prevents repetition.", | |
minimum=1.0, | |
maximum=5.0, | |
step=0.5, | |
value=1.5, | |
) | |
max_length = gr.Slider( | |
label="Max Length", | |
minimum=20, | |
maximum=512, | |
step=1, | |
value=50, | |
) | |
min_length = gr.Slider( | |
label="Minimum Length", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=1, | |
) | |
num_beams = gr.Slider( | |
label="Number of Beams", | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=5, | |
) | |
top_p = gr.Slider( | |
label="Top P", | |
info="Used with nucleus sampling.", | |
minimum=0.5, | |
maximum=1.0, | |
step=0.1, | |
value=0.9, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[image, vqa_input], | |
outputs=caption_output, | |
fn=generate_caption, | |
) | |
caption_button.click( | |
fn=generate_caption, | |
inputs=[ | |
image, | |
text_decoding_method, | |
temperature, | |
length_penalty, | |
repetition_penalty, | |
max_length, | |
min_length, | |
num_beams, | |
top_p, | |
], | |
outputs=caption_output, | |
api_name="caption", | |
) | |
batch_caption_button.click( | |
fn=generate_captions, | |
inputs=[ | |
batch_images, | |
text_decoding_method, | |
temperature, | |
length_penalty, | |
repetition_penalty, | |
max_length, | |
min_length, | |
num_beams, | |
top_p, | |
], | |
outputs=batch_caption_output, | |
api_name="caption", | |
) | |
chat_inputs = [ | |
image, | |
vqa_input, | |
text_decoding_method, | |
temperature, | |
length_penalty, | |
repetition_penalty, | |
max_length, | |
min_length, | |
num_beams, | |
top_p, | |
history_orig, | |
history_qa, | |
] | |
chat_outputs = [ | |
chatbot, | |
history_orig, | |
history_qa, | |
] | |
vqa_input.submit( | |
fn=chat, | |
inputs=chat_inputs, | |
outputs=chat_outputs, | |
).success( | |
fn=lambda: "", | |
outputs=vqa_input, | |
queue=False, | |
api_name=False, | |
) | |
chat_button.click( | |
fn=chat, | |
inputs=chat_inputs, | |
outputs=chat_outputs, | |
api_name="chat", | |
).success( | |
fn=lambda: "", | |
outputs=vqa_input, | |
queue=False, | |
api_name=False, | |
) | |
clear_chat_button.click( | |
fn=lambda: ("", [], [], []), | |
inputs=None, | |
outputs=[ | |
vqa_input, | |
chatbot, | |
history_orig, | |
history_qa, | |
], | |
queue=False, | |
api_name="clear", | |
) | |
image.change( | |
fn=lambda: ("", [], [], []), | |
inputs=None, | |
outputs=[ | |
caption_output, | |
chatbot, | |
history_orig, | |
history_qa, | |
], | |
queue=False, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() | |