|
import functools |
|
import torch.nn as nn |
|
from einops import rearrange |
|
import torch |
|
|
|
|
|
def weights_init(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('Conv') != -1: |
|
nn.init.normal_(m.weight.data, 0.0, 0.02) |
|
nn.init.constant_(m.bias.data, 0) |
|
elif classname.find('BatchNorm') != -1: |
|
nn.init.normal_(m.weight.data, 1.0, 0.02) |
|
nn.init.constant_(m.bias.data, 0) |
|
|
|
|
|
class NLayerDiscriminator(nn.Module): |
|
"""Defines a PatchGAN discriminator as in Pix2Pix |
|
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py |
|
""" |
|
def __init__(self, input_nc=3, ndf=64, n_layers=4): |
|
"""Construct a PatchGAN discriminator |
|
Parameters: |
|
input_nc (int) -- the number of channels in input images |
|
ndf (int) -- the number of filters in the last conv layer |
|
n_layers (int) -- the number of conv layers in the discriminator |
|
norm_layer -- normalization layer |
|
""" |
|
super(NLayerDiscriminator, self).__init__() |
|
|
|
|
|
norm_layer = nn.InstanceNorm2d |
|
|
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func != nn.BatchNorm2d |
|
else: |
|
use_bias = norm_layer != nn.BatchNorm2d |
|
|
|
kw = 4 |
|
padw = 1 |
|
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] |
|
nf_mult = 1 |
|
nf_mult_prev = 1 |
|
for n in range(1, n_layers): |
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2 ** n, 8) |
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2 ** n_layers, 8) |
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] |
|
self.main = nn.Sequential(*sequence) |
|
|
|
def forward(self, input): |
|
"""Standard forward.""" |
|
return self.main(input) |
|
|
|
|
|
class NLayerDiscriminator3D(nn.Module): |
|
"""Defines a 3D PatchGAN discriminator as in Pix2Pix but for 3D inputs.""" |
|
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): |
|
""" |
|
Construct a 3D PatchGAN discriminator |
|
|
|
Parameters: |
|
input_nc (int) -- the number of channels in input volumes |
|
ndf (int) -- the number of filters in the last conv layer |
|
n_layers (int) -- the number of conv layers in the discriminator |
|
use_actnorm (bool) -- flag to use actnorm instead of batchnorm |
|
""" |
|
super(NLayerDiscriminator3D, self).__init__() |
|
|
|
|
|
|
|
|
|
|
|
norm_layer = nn.InstanceNorm3d |
|
|
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func != nn.BatchNorm3d |
|
else: |
|
use_bias = norm_layer != nn.BatchNorm3d |
|
|
|
kw = 4 |
|
padw = 1 |
|
sequence = [nn.Conv3d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] |
|
nf_mult = 1 |
|
nf_mult_prev = 1 |
|
for n in range(1, n_layers): |
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2 ** n, 8) |
|
sequence += [ |
|
nn.Conv3d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=(kw, kw, kw), stride=(1,2,2), padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2 ** n_layers, 8) |
|
sequence += [ |
|
nn.Conv3d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=(kw, kw, kw), stride=1, padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True) |
|
] |
|
|
|
sequence += [nn.Conv3d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] |
|
self.main = nn.Sequential(*sequence) |
|
|
|
def forward(self, input): |
|
"""Standard forward.""" |
|
return self.main(input) |