|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from einops import rearrange |
|
|
|
from diffusers.utils import logging |
|
from diffusers.models.attention_processor import Attention |
|
from .modeling_resnet import ( |
|
Downsample2D, ResnetBlock2D, CausalResnetBlock3D, Upsample2D, |
|
TemporalDownsample2x, TemporalUpsample2x, |
|
CausalDownsample2x, CausalTemporalDownsample2x, |
|
CausalUpsample2x, CausalTemporalUpsample2x, |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def get_input_layer( |
|
in_channels: int, |
|
out_channels: int, |
|
norm_num_groups: int, |
|
layer_type: str, |
|
norm_type: str = 'group', |
|
affine: bool = True, |
|
): |
|
if layer_type == 'conv': |
|
input_layer = nn.Conv3d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
elif layer_type == 'pixel_shuffle': |
|
input_layer = nn.Sequential( |
|
nn.PixelUnshuffle(2), |
|
nn.Conv2d(in_channels * 4, out_channels, kernel_size=1), |
|
) |
|
else: |
|
raise NotImplementedError(f"Not support input layer {layer_type}") |
|
|
|
return input_layer |
|
|
|
|
|
def get_output_layer( |
|
in_channels: int, |
|
out_channels: int, |
|
norm_num_groups: int, |
|
layer_type: str, |
|
norm_type: str = 'group', |
|
affine: bool = True, |
|
): |
|
if layer_type == 'norm_act_conv': |
|
output_layer = nn.Sequential( |
|
nn.GroupNorm(num_channels=in_channels, num_groups=norm_num_groups, eps=1e-6, affine=affine), |
|
nn.SiLU(), |
|
nn.Conv3d(in_channels, out_channels, 3, stride=1, padding=1), |
|
) |
|
|
|
elif layer_type == 'pixel_shuffle': |
|
output_layer = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels * 4, kernel_size=1), |
|
nn.PixelShuffle(2), |
|
) |
|
|
|
else: |
|
raise NotImplementedError(f"Not support output layer {layer_type}") |
|
|
|
return output_layer |
|
|
|
|
|
def get_down_block( |
|
down_block_type: str, |
|
num_layers: int, |
|
in_channels: int, |
|
out_channels: int = None, |
|
temb_channels: int = None, |
|
add_spatial_downsample: bool = None, |
|
add_temporal_downsample: bool = None, |
|
resnet_eps: float = 1e-6, |
|
resnet_act_fn: str = 'silu', |
|
resnet_groups: Optional[int] = None, |
|
downsample_padding: Optional[int] = None, |
|
resnet_time_scale_shift: str = "default", |
|
attention_head_dim: Optional[int] = None, |
|
dropout: float = 0.0, |
|
norm_affline: bool = True, |
|
norm_layer: str = 'layer', |
|
): |
|
|
|
if down_block_type == "DownEncoderBlock2D": |
|
return DownEncoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
add_spatial_downsample=add_spatial_downsample, |
|
add_temporal_downsample=add_temporal_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
|
|
elif down_block_type == "DownEncoderBlockCausal3D": |
|
return DownEncoderBlockCausal3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
add_spatial_downsample=add_spatial_downsample, |
|
add_temporal_downsample=add_temporal_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
|
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block( |
|
up_block_type: str, |
|
num_layers: int, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int = None, |
|
temb_channels: int = None, |
|
add_spatial_upsample: bool = None, |
|
add_temporal_upsample: bool = None, |
|
resnet_eps: float = 1e-6, |
|
resnet_act_fn: str = 'silu', |
|
resolution_idx: Optional[int] = None, |
|
resnet_groups: Optional[int] = None, |
|
resnet_time_scale_shift: str = "default", |
|
attention_head_dim: Optional[int] = None, |
|
dropout: float = 0.0, |
|
interpolate: bool = True, |
|
norm_affline: bool = True, |
|
norm_layer: str = 'layer', |
|
) -> nn.Module: |
|
|
|
if up_block_type == "UpDecoderBlock2D": |
|
return UpDecoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_spatial_upsample=add_spatial_upsample, |
|
add_temporal_upsample=add_temporal_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temb_channels=temb_channels, |
|
interpolate=interpolate, |
|
) |
|
|
|
elif up_block_type == "UpDecoderBlockCausal3D": |
|
return UpDecoderBlockCausal3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_spatial_upsample=add_spatial_upsample, |
|
add_temporal_upsample=add_temporal_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temb_channels=temb_channels, |
|
interpolate=interpolate, |
|
) |
|
|
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
|
|
class UNetMidBlock2D(nn.Module): |
|
""" |
|
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. |
|
|
|
Args: |
|
in_channels (`int`): The number of input channels. |
|
temb_channels (`int`): The number of temporal embedding channels. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. |
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. |
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. |
|
resnet_time_scale_shift (`str`, *optional*, defaults to `default`): |
|
The type of normalization to apply to the time embeddings. This can help to improve the performance of the |
|
model on tasks with long-range temporal dependencies. |
|
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. |
|
resnet_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use in the group normalization layers of the resnet blocks. |
|
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. |
|
resnet_pre_norm (`bool`, *optional*, defaults to `True`): |
|
Whether to use pre-normalization for the resnet blocks. |
|
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. |
|
attention_head_dim (`int`, *optional*, defaults to 1): |
|
Dimension of a single attention head. The number of attention heads is determined based on this value and |
|
the number of input channels. |
|
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. |
|
|
|
Returns: |
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, |
|
in_channels, height, width)`. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
attn_groups: Optional[int] = None, |
|
resnet_pre_norm: bool = True, |
|
add_attention: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
): |
|
super().__init__() |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
self.add_attention = add_attention |
|
|
|
if attn_groups is None: |
|
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." |
|
) |
|
attention_head_dim = in_channels |
|
|
|
for _ in range(num_layers): |
|
if self.add_attention: |
|
|
|
attentions.append( |
|
Attention( |
|
in_channels, |
|
heads=in_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=attn_groups, |
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
else: |
|
attentions.append(None) |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
t = hidden_states.shape[2] |
|
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
if attn is not None: |
|
hidden_states = rearrange(hidden_states, 'b c t h w -> b t c h w') |
|
hidden_states = rearrange(hidden_states, 'b t c h w -> (b t) c h w') |
|
hidden_states = attn(hidden_states, temb=temb) |
|
hidden_states = rearrange(hidden_states, '(b t) c h w -> b t c h w', t=t) |
|
hidden_states = rearrange(hidden_states, 'b t c h w -> b c t h w') |
|
|
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class CausalUNetMidBlock2D(nn.Module): |
|
""" |
|
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. |
|
|
|
Args: |
|
in_channels (`int`): The number of input channels. |
|
temb_channels (`int`): The number of temporal embedding channels. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. |
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. |
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. |
|
resnet_time_scale_shift (`str`, *optional*, defaults to `default`): |
|
The type of normalization to apply to the time embeddings. This can help to improve the performance of the |
|
model on tasks with long-range temporal dependencies. |
|
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. |
|
resnet_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use in the group normalization layers of the resnet blocks. |
|
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. |
|
resnet_pre_norm (`bool`, *optional*, defaults to `True`): |
|
Whether to use pre-normalization for the resnet blocks. |
|
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. |
|
attention_head_dim (`int`, *optional*, defaults to 1): |
|
Dimension of a single attention head. The number of attention heads is determined based on this value and |
|
the number of input channels. |
|
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. |
|
|
|
Returns: |
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, |
|
in_channels, height, width)`. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
attn_groups: Optional[int] = None, |
|
resnet_pre_norm: bool = True, |
|
add_attention: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
): |
|
super().__init__() |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
self.add_attention = add_attention |
|
|
|
if attn_groups is None: |
|
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None |
|
|
|
|
|
resnets = [ |
|
CausalResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." |
|
) |
|
attention_head_dim = in_channels |
|
|
|
for _ in range(num_layers): |
|
if self.add_attention: |
|
|
|
attentions.append( |
|
Attention( |
|
in_channels, |
|
heads=in_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=attn_groups, |
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
else: |
|
attentions.append(None) |
|
|
|
resnets.append( |
|
CausalResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, |
|
is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: |
|
hidden_states = self.resnets[0](hidden_states, temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
t = hidden_states.shape[2] |
|
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
if attn is not None: |
|
hidden_states = rearrange(hidden_states, 'b c t h w -> b t c h w') |
|
hidden_states = rearrange(hidden_states, 'b t c h w -> (b t) c h w') |
|
hidden_states = attn(hidden_states, temb=temb) |
|
hidden_states = rearrange(hidden_states, '(b t) c h w -> b t c h w', t=t) |
|
hidden_states = rearrange(hidden_states, 'b t c h w -> b c t h w') |
|
|
|
hidden_states = resnet(hidden_states, temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
return hidden_states |
|
|
|
|
|
class DownEncoderBlockCausal3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_spatial_downsample: bool = True, |
|
add_temporal_downsample: bool = False, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
CausalResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_spatial_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
CausalDownsample2x( |
|
out_channels, use_conv=True, out_channels=out_channels, |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
if add_temporal_downsample: |
|
self.temporal_downsamplers = nn.ModuleList( |
|
[ |
|
CausalTemporalDownsample2x( |
|
out_channels, use_conv=True, out_channels=out_channels, |
|
) |
|
] |
|
) |
|
else: |
|
self.temporal_downsamplers = None |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=None, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
if self.temporal_downsamplers is not None: |
|
for temporal_downsampler in self.temporal_downsamplers: |
|
hidden_states = temporal_downsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
return hidden_states |
|
|
|
|
|
class DownEncoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_spatial_downsample: bool = True, |
|
add_temporal_downsample: bool = False, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_spatial_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
if add_temporal_downsample: |
|
self.temporal_downsamplers = nn.ModuleList( |
|
[ |
|
TemporalDownsample2x( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, |
|
) |
|
] |
|
) |
|
else: |
|
self.temporal_downsamplers = None |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=None) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
if self.temporal_downsamplers is not None: |
|
for temporal_downsampler in self.temporal_downsamplers: |
|
hidden_states = temporal_downsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpDecoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_spatial_upsample: bool = True, |
|
add_temporal_upsample: bool = False, |
|
temb_channels: Optional[int] = None, |
|
interpolate: bool = True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_spatial_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
if add_temporal_upsample: |
|
self.temporal_upsamplers = nn.ModuleList([TemporalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) |
|
else: |
|
self.temporal_upsamplers = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, is_image: bool = False, |
|
) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=temb, scale=scale) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
if self.temporal_upsamplers is not None: |
|
for temporal_upsampler in self.temporal_upsamplers: |
|
hidden_states = temporal_upsampler(hidden_states, is_image=is_image) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpDecoderBlockCausal3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_spatial_upsample: bool = True, |
|
add_temporal_upsample: bool = False, |
|
temb_channels: Optional[int] = None, |
|
interpolate: bool = True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
CausalResnetBlock3D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_spatial_upsample: |
|
self.upsamplers = nn.ModuleList([CausalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
if add_temporal_upsample: |
|
self.temporal_upsamplers = nn.ModuleList([CausalTemporalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) |
|
else: |
|
self.temporal_upsamplers = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, |
|
is_init_image=True, temporal_chunk=False, |
|
) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
if self.temporal_upsamplers is not None: |
|
for temporal_upsampler in self.temporal_upsamplers: |
|
hidden_states = temporal_upsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
return hidden_states |
|
|
|
|