|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union, List |
|
import math |
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from IPython import embed |
|
|
|
|
|
@dataclass |
|
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
|
|
|
|
class PyramidFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Euler scheduler. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
shift (`float`, defaults to 1.0): |
|
The shift value for the timestep schedule. |
|
""" |
|
|
|
_compatibles = [] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
shift: float = 1.0, |
|
stages: int = 3, |
|
stage_range: List = [0, 1/3, 2/3, 1], |
|
gamma: float = 1/3, |
|
): |
|
|
|
self.timestep_ratios = {} |
|
self.timesteps_per_stage = {} |
|
self.sigmas_per_stage = {} |
|
self.start_sigmas = {} |
|
self.end_sigmas = {} |
|
self.ori_start_sigmas = {} |
|
|
|
|
|
self.init_sigmas_for_each_stage() |
|
self.sigma_min = self.sigmas[-1].item() |
|
self.sigma_max = self.sigmas[0].item() |
|
self.gamma = gamma |
|
|
|
def init_sigmas(self): |
|
""" |
|
initialize the global timesteps and sigmas |
|
""" |
|
num_train_timesteps = self.config.num_train_timesteps |
|
shift = self.config.shift |
|
|
|
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) |
|
|
|
sigmas = timesteps / num_train_timesteps |
|
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) |
|
|
|
self.timesteps = sigmas * num_train_timesteps |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
self.sigmas = sigmas.to("cpu") |
|
|
|
def init_sigmas_for_each_stage(self): |
|
""" |
|
Init the timesteps for each stage |
|
""" |
|
self.init_sigmas() |
|
|
|
stage_distance = [] |
|
stages = self.config.stages |
|
training_steps = self.config.num_train_timesteps |
|
stage_range = self.config.stage_range |
|
|
|
|
|
for i_s in range(stages): |
|
|
|
start_indice = int(stage_range[i_s] * training_steps) |
|
start_indice = max(start_indice, 0) |
|
end_indice = int(stage_range[i_s+1] * training_steps) |
|
end_indice = min(end_indice, training_steps) |
|
start_sigma = self.sigmas[start_indice].item() |
|
end_sigma = self.sigmas[end_indice].item() if end_indice < training_steps else 0.0 |
|
self.ori_start_sigmas[i_s] = start_sigma |
|
|
|
if i_s != 0: |
|
ori_sigma = 1 - start_sigma |
|
gamma = self.config.gamma |
|
corrected_sigma = (1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)) * ori_sigma |
|
|
|
start_sigma = 1 - corrected_sigma |
|
|
|
stage_distance.append(start_sigma - end_sigma) |
|
self.start_sigmas[i_s] = start_sigma |
|
self.end_sigmas[i_s] = end_sigma |
|
|
|
|
|
tot_distance = sum(stage_distance) |
|
for i_s in range(stages): |
|
if i_s == 0: |
|
start_ratio = 0.0 |
|
else: |
|
start_ratio = sum(stage_distance[:i_s]) / tot_distance |
|
if i_s == stages - 1: |
|
end_ratio = 1.0 |
|
else: |
|
end_ratio = sum(stage_distance[:i_s+1]) / tot_distance |
|
|
|
self.timestep_ratios[i_s] = (start_ratio, end_ratio) |
|
|
|
|
|
for i_s in range(stages): |
|
timestep_ratio = self.timestep_ratios[i_s] |
|
timestep_max = self.timesteps[int(timestep_ratio[0] * training_steps)] |
|
timestep_min = self.timesteps[min(int(timestep_ratio[1] * training_steps), training_steps - 1)] |
|
timesteps = np.linspace( |
|
timestep_max, timestep_min, training_steps + 1, |
|
) |
|
self.timesteps_per_stage[i_s] = torch.from_numpy(timesteps[:-1]) |
|
stage_sigmas = np.linspace( |
|
1, 0, training_steps + 1, |
|
) |
|
self.sigmas_per_stage[i_s] = torch.from_numpy(stage_sigmas[:-1]) |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def _sigma_to_t(self, sigma): |
|
return sigma * self.config.num_train_timesteps |
|
|
|
def set_timesteps(self, num_inference_steps: int, stage_index: int, device: Union[str, torch.device] = None): |
|
""" |
|
Setting the timesteps and sigmas for each stage |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
training_steps = self.config.num_train_timesteps |
|
self.init_sigmas() |
|
|
|
stage_timesteps = self.timesteps_per_stage[stage_index] |
|
timestep_max = stage_timesteps[0].item() |
|
timestep_min = stage_timesteps[-1].item() |
|
|
|
timesteps = np.linspace( |
|
timestep_max, timestep_min, num_inference_steps, |
|
) |
|
self.timesteps = torch.from_numpy(timesteps).to(device=device) |
|
|
|
stage_sigmas = self.sigmas_per_stage[stage_index] |
|
sigma_max = stage_sigmas[0].item() |
|
sigma_min = stage_sigmas[-1].item() |
|
|
|
ratios = np.linspace( |
|
sigma_max, sigma_min, num_inference_steps |
|
) |
|
sigmas = torch.from_numpy(ratios).to(device=device) |
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
|
|
self._step_index = None |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
def _init_step_index(self, timestep): |
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or |
|
tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if self.step_index is None: |
|
self._step_index = 0 |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sigma_next = self.sigmas[self.step_index + 1] |
|
|
|
prev_sample = sample + (sigma_next - sigma) * model_output |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|