|
import os |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from .modeling_lpips import LPIPS |
|
from .modeling_discriminator import NLayerDiscriminator, NLayerDiscriminator3D, weights_init |
|
from IPython import embed |
|
|
|
|
|
class AdaptiveLossWeight: |
|
def __init__(self, timestep_range=[0, 1], buckets=300, weight_range=[1e-7, 1e7]): |
|
self.bucket_ranges = torch.linspace(timestep_range[0], timestep_range[1], buckets-1) |
|
self.bucket_losses = torch.ones(buckets) |
|
self.weight_range = weight_range |
|
|
|
def weight(self, timestep): |
|
indices = torch.searchsorted(self.bucket_ranges.to(timestep.device), timestep) |
|
return (1/self.bucket_losses.to(timestep.device)[indices]).clamp(*self.weight_range) |
|
|
|
def update_buckets(self, timestep, loss, beta=0.99): |
|
indices = torch.searchsorted(self.bucket_ranges.to(timestep.device), timestep).cpu() |
|
self.bucket_losses[indices] = self.bucket_losses[indices]*beta + loss.detach().cpu() * (1-beta) |
|
|
|
|
|
def hinge_d_loss(logits_real, logits_fake): |
|
loss_real = torch.mean(F.relu(1.0 - logits_real)) |
|
loss_fake = torch.mean(F.relu(1.0 + logits_fake)) |
|
d_loss = 0.5 * (loss_real + loss_fake) |
|
return d_loss |
|
|
|
|
|
def vanilla_d_loss(logits_real, logits_fake): |
|
d_loss = 0.5 * ( |
|
torch.mean(torch.nn.functional.softplus(-logits_real)) |
|
+ torch.mean(torch.nn.functional.softplus(logits_fake)) |
|
) |
|
return d_loss |
|
|
|
|
|
def adopt_weight(weight, global_step, threshold=0, value=0.0): |
|
if global_step < threshold: |
|
weight = value |
|
return weight |
|
|
|
|
|
class LPIPSWithDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
disc_start, |
|
logvar_init=0.0, |
|
kl_weight=1.0, |
|
pixelloss_weight=1.0, |
|
perceptual_weight=1.0, |
|
|
|
disc_num_layers=4, |
|
disc_in_channels=3, |
|
disc_factor=1.0, |
|
disc_weight=0.5, |
|
disc_loss="hinge", |
|
add_discriminator=True, |
|
using_3d_discriminator=False, |
|
): |
|
|
|
super().__init__() |
|
assert disc_loss in ["hinge", "vanilla"] |
|
self.kl_weight = kl_weight |
|
self.pixel_weight = pixelloss_weight |
|
self.perceptual_loss = LPIPS().eval() |
|
self.perceptual_weight = perceptual_weight |
|
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) |
|
|
|
if add_discriminator: |
|
disc_cls = NLayerDiscriminator3D if using_3d_discriminator else NLayerDiscriminator |
|
self.discriminator = disc_cls( |
|
input_nc=disc_in_channels, n_layers=disc_num_layers, |
|
).apply(weights_init) |
|
else: |
|
self.discriminator = None |
|
|
|
self.discriminator_iter_start = disc_start |
|
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss |
|
self.disc_factor = disc_factor |
|
self.discriminator_weight = disc_weight |
|
self.using_3d_discriminator = using_3d_discriminator |
|
|
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): |
|
if last_layer is not None: |
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
else: |
|
nll_grads = torch.autograd.grad( |
|
nll_loss, self.last_layer[0], retain_graph=True |
|
)[0] |
|
g_grads = torch.autograd.grad( |
|
g_loss, self.last_layer[0], retain_graph=True |
|
)[0] |
|
|
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) |
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() |
|
d_weight = d_weight * self.discriminator_weight |
|
return d_weight |
|
|
|
def forward( |
|
self, |
|
inputs, |
|
reconstructions, |
|
posteriors, |
|
optimizer_idx, |
|
global_step, |
|
split="train", |
|
last_layer=None, |
|
): |
|
t = reconstructions.shape[2] |
|
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() |
|
reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous() |
|
|
|
if optimizer_idx == 0: |
|
|
|
rec_loss = torch.mean(F.mse_loss(inputs, reconstructions, reduction='none'), dim=(1,2,3), keepdim=True) |
|
|
|
if self.perceptual_weight > 0: |
|
p_loss = self.perceptual_loss(inputs, reconstructions) |
|
nll_loss = self.pixel_weight * rec_loss + self.perceptual_weight * p_loss |
|
|
|
nll_loss = nll_loss / torch.exp(self.logvar) + self.logvar |
|
weighted_nll_loss = nll_loss |
|
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] |
|
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] |
|
|
|
kl_loss = posteriors.kl() |
|
kl_loss = torch.mean(kl_loss) |
|
|
|
disc_factor = adopt_weight( |
|
self.disc_factor, global_step, threshold=self.discriminator_iter_start |
|
) |
|
|
|
if disc_factor > 0.0: |
|
if self.using_3d_discriminator: |
|
reconstructions = rearrange(reconstructions, '(b t) c h w -> b c t h w', t=t) |
|
|
|
logits_fake = self.discriminator(reconstructions.contiguous()) |
|
g_loss = -torch.mean(logits_fake) |
|
try: |
|
d_weight = self.calculate_adaptive_weight( |
|
nll_loss, g_loss, last_layer=last_layer |
|
) |
|
except RuntimeError: |
|
assert not self.training |
|
d_weight = torch.tensor(0.0) |
|
else: |
|
d_weight = torch.tensor(0.0) |
|
g_loss = torch.tensor(0.0) |
|
|
|
|
|
loss = ( |
|
weighted_nll_loss |
|
+ self.kl_weight * kl_loss |
|
+ d_weight * disc_factor * g_loss |
|
) |
|
log = { |
|
"{}/total_loss".format(split): loss.clone().detach().mean(), |
|
"{}/logvar".format(split): self.logvar.detach(), |
|
"{}/kl_loss".format(split): kl_loss.detach().mean(), |
|
"{}/nll_loss".format(split): nll_loss.detach().mean(), |
|
"{}/rec_loss".format(split): rec_loss.detach().mean(), |
|
"{}/perception_loss".format(split): p_loss.detach().mean(), |
|
"{}/d_weight".format(split): d_weight.detach(), |
|
"{}/disc_factor".format(split): torch.tensor(disc_factor), |
|
"{}/g_loss".format(split): g_loss.detach().mean(), |
|
} |
|
return loss, log |
|
|
|
if optimizer_idx == 1: |
|
if self.using_3d_discriminator: |
|
inputs = rearrange(inputs, '(b t) c h w -> b c t h w', t=t) |
|
reconstructions = rearrange(reconstructions, '(b t) c h w -> b c t h w', t=t) |
|
|
|
logits_real = self.discriminator(inputs.contiguous().detach()) |
|
logits_fake = self.discriminator(reconstructions.contiguous().detach()) |
|
|
|
disc_factor = adopt_weight( |
|
self.disc_factor, global_step, threshold=self.discriminator_iter_start |
|
) |
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) |
|
|
|
log = { |
|
"{}/disc_loss".format(split): d_loss.clone().detach().mean(), |
|
"{}/logits_real".format(split): logits_real.detach().mean(), |
|
"{}/logits_fake".format(split): logits_fake.detach().mean(), |
|
} |
|
return d_loss, log |