|
import os |
|
import torch |
|
import gradio as gr |
|
from PIL import Image |
|
from huggingface_hub import snapshot_download |
|
from pyramid_dit import PyramidDiTForVideoGeneration |
|
from diffusers.utils import export_to_video |
|
|
|
|
|
MODEL_PATH = "pyramid-flow-model" |
|
MODEL_REPO = "rain1011/pyramid-flow-sd3" |
|
MODEL_VARIANT = "diffusion_transformer_768p" |
|
MODEL_DTYPE = "bf16" |
|
|
|
|
|
def load_model(): |
|
if not os.path.exists(MODEL_PATH): |
|
snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model') |
|
|
|
model = PyramidDiTForVideoGeneration( |
|
MODEL_PATH, |
|
MODEL_DTYPE, |
|
model_variant=MODEL_VARIANT, |
|
) |
|
|
|
model.vae.to("cuda") |
|
model.dit.to("cuda") |
|
model.text_encoder.to("cuda") |
|
model.vae.enable_tiling() |
|
|
|
return model |
|
|
|
|
|
model = load_model() |
|
|
|
|
|
def generate_video(prompt, duration, guidance_scale, video_guidance_scale): |
|
temp = int(duration * 2.4) |
|
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): |
|
frames = model.generate( |
|
prompt=prompt, |
|
num_inference_steps=[20, 20, 20], |
|
video_num_inference_steps=[10, 10, 10], |
|
height=768, |
|
width=1280, |
|
temp=temp, |
|
guidance_scale=guidance_scale, |
|
video_guidance_scale=video_guidance_scale, |
|
output_type="pil", |
|
save_memory=True, |
|
) |
|
|
|
output_path = "output_video.mp4" |
|
export_to_video(frames, output_path, fps=24) |
|
return output_path |
|
|
|
|
|
def generate_video_from_image(image, prompt, duration, video_guidance_scale): |
|
temp = int(duration * 2.4) |
|
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 |
|
|
|
image = image.resize((1280, 768)) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): |
|
frames = model.generate_i2v( |
|
prompt=prompt, |
|
input_image=image, |
|
num_inference_steps=[10, 10, 10], |
|
temp=temp, |
|
guidance_scale=7.0, |
|
video_guidance_scale=video_guidance_scale, |
|
output_type="pil", |
|
save_memory=True, |
|
) |
|
|
|
output_path = "output_video_i2v.mp4" |
|
export_to_video(frames, output_path, fps=24) |
|
return output_path |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Pyramid Flow Video Generation Demo") |
|
|
|
with gr.Tab("Text-to-Video"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
t2v_prompt = gr.Textbox(label="Prompt") |
|
t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") |
|
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale") |
|
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale") |
|
t2v_generate_btn = gr.Button("Generate Video") |
|
with gr.Column(): |
|
t2v_output = gr.Video(label="Generated Video") |
|
|
|
t2v_generate_btn.click( |
|
generate_video, |
|
inputs=[t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale], |
|
outputs=t2v_output |
|
) |
|
|
|
with gr.Tab("Image-to-Video"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
i2v_image = gr.Image(type="pil", label="Input Image") |
|
i2v_prompt = gr.Textbox(label="Prompt") |
|
i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") |
|
i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale") |
|
i2v_generate_btn = gr.Button("Generate Video") |
|
with gr.Column(): |
|
i2v_output = gr.Video(label="Generated Video") |
|
|
|
i2v_generate_btn.click( |
|
generate_video_from_image, |
|
inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale], |
|
outputs=i2v_output |
|
) |
|
|
|
demo.launch() |