|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
|
|
from diffusers.utils import BaseOutput, is_torch_version |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.models.attention_processor import SpatialNorm |
|
from .modeling_block import ( |
|
UNetMidBlock2D, |
|
CausalUNetMidBlock2D, |
|
get_down_block, |
|
get_up_block, |
|
get_input_layer, |
|
get_output_layer, |
|
) |
|
from .modeling_resnet import ( |
|
Downsample2D, |
|
Upsample2D, |
|
TemporalDownsample2x, |
|
TemporalUpsample2x, |
|
) |
|
from .modeling_causal_conv import CausalConv3d, CausalGroupNorm |
|
|
|
|
|
@dataclass |
|
class DecoderOutput(BaseOutput): |
|
r""" |
|
Output of decoding method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
The decoded output sample from the last layer of the model. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class CausalVaeEncoder(nn.Module): |
|
r""" |
|
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available |
|
options. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
double_z (`bool`, *optional*, defaults to `True`): |
|
Whether to double the number of output channels for the last block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",), |
|
spatial_down_sample: Tuple[bool, ...] = (True,), |
|
temporal_down_sample: Tuple[bool, ...] = (False,), |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: Tuple[int, ...] = (2,), |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
double_z: bool = True, |
|
block_dropout: Tuple[int, ...] = (0.0,), |
|
mid_block_add_attention=True, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = CausalConv3d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=3, |
|
stride=1, |
|
) |
|
|
|
self.mid_block = None |
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=self.layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
add_spatial_downsample=spatial_down_sample[i], |
|
add_temporal_downsample=temporal_down_sample[i], |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=None, |
|
dropout=block_dropout[i], |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = CausalUNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
add_attention=mid_block_add_attention, |
|
dropout=block_dropout[-1], |
|
) |
|
|
|
|
|
|
|
self.conv_norm_out = CausalGroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3, stride=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, sample: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: |
|
r"""The forward method of the `Encoder` class.""" |
|
|
|
sample = self.conv_in(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
for down_block in self.down_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(down_block), sample, is_init_image, |
|
temporal_chunk, use_reentrant=False |
|
) |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), sample, is_init_image, |
|
temporal_chunk, use_reentrant=False |
|
) |
|
else: |
|
for down_block in self.down_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample, is_init_image, temporal_chunk) |
|
|
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, is_init_image, temporal_chunk) |
|
|
|
else: |
|
|
|
for down_block in self.down_blocks: |
|
sample = down_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
|
|
sample = self.mid_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
return sample |
|
|
|
|
|
class CausalVaeDecoder(nn.Module): |
|
r""" |
|
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
norm_type (`str`, *optional*, defaults to `"group"`): |
|
The normalization type to use. Can be either `"group"` or `"spatial"`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",), |
|
spatial_up_sample: Tuple[bool, ...] = (True,), |
|
temporal_up_sample: Tuple[bool, ...] = (False,), |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: Tuple[int, ...] = (2,), |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
mid_block_add_attention=True, |
|
interpolate: bool = True, |
|
block_dropout: Tuple[int, ...] = (0.0,), |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = CausalConv3d( |
|
in_channels, |
|
block_out_channels[-1], |
|
kernel_size=3, |
|
stride=1, |
|
) |
|
|
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
|
|
self.mid_block = CausalUNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
add_attention=mid_block_add_attention, |
|
dropout=block_dropout[-1], |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=self.layers_per_block[i], |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=None, |
|
add_spatial_upsample=spatial_up_sample[i], |
|
add_temporal_upsample=temporal_up_sample[i], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=None, |
|
resnet_time_scale_shift='default', |
|
interpolate=interpolate, |
|
dropout=block_dropout[i], |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.conv_norm_out = CausalGroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3, stride=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
is_init_image=True, |
|
temporal_chunk=False, |
|
) -> torch.FloatTensor: |
|
r"""The forward method of the `Decoder` class.""" |
|
|
|
sample = self.conv_in(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), |
|
sample, |
|
is_init_image=is_init_image, |
|
temporal_chunk=temporal_chunk, |
|
use_reentrant=False, |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(up_block), |
|
sample, |
|
is_init_image=is_init_image, |
|
temporal_chunk=temporal_chunk, |
|
use_reentrant=False, |
|
) |
|
else: |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk, |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, |
|
is_init_image=is_init_image, temporal_chunk=temporal_chunk,) |
|
else: |
|
|
|
sample = self.mid_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = up_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk,) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
return sample |
|
|
|
|
|
class DiagonalGaussianDistribution(object): |
|
def __init__(self, parameters: torch.Tensor, deterministic: bool = False): |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.deterministic = deterministic |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like( |
|
self.mean, device=self.parameters.device, dtype=self.parameters.dtype |
|
) |
|
|
|
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: |
|
|
|
sample = randn_tensor( |
|
self.mean.shape, |
|
generator=generator, |
|
device=self.parameters.device, |
|
dtype=self.parameters.dtype, |
|
) |
|
x = self.mean + self.std * sample |
|
return x |
|
|
|
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
else: |
|
if other is None: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, |
|
dim=[2, 3, 4], |
|
) |
|
else: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean - other.mean, 2) / other.var |
|
+ self.var / other.var |
|
- 1.0 |
|
- self.logvar |
|
+ other.logvar, |
|
dim=[2, 3, 4], |
|
) |
|
|
|
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
logtwopi = np.log(2.0 * np.pi) |
|
return 0.5 * torch.sum( |
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, |
|
dim=dims, |
|
) |
|
|
|
def mode(self) -> torch.Tensor: |
|
return self.mean |