|
import os |
|
import torch |
|
import gradio as gr |
|
from PIL import Image, ImageOps |
|
|
|
from huggingface_hub import snapshot_download |
|
from pyramid_dit import PyramidDiTForVideoGeneration |
|
from diffusers.utils import export_to_video |
|
|
|
import spaces |
|
import uuid |
|
|
|
|
|
MODEL_PATH = "pyramid-flow-model" |
|
MODEL_REPO = "rain1011/pyramid-flow-sd3" |
|
MODEL_VARIANT = "diffusion_transformer_384p" |
|
MODEL_DTYPE = "bf16" |
|
|
|
def center_crop(image, target_width, target_height): |
|
width, height = image.size |
|
aspect_ratio_target = target_width / target_height |
|
aspect_ratio_image = width / height |
|
|
|
if aspect_ratio_image > aspect_ratio_target: |
|
|
|
new_width = int(height * aspect_ratio_target) |
|
left = (width - new_width) // 2 |
|
right = left + new_width |
|
top, bottom = 0, height |
|
else: |
|
|
|
new_height = int(width / aspect_ratio_target) |
|
top = (height - new_height) // 2 |
|
bottom = top + new_height |
|
left, right = 0, width |
|
|
|
image = image.crop((left, top, right, bottom)) |
|
return image |
|
|
|
|
|
def load_model(): |
|
if not os.path.exists(MODEL_PATH): |
|
snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model') |
|
|
|
model = PyramidDiTForVideoGeneration( |
|
MODEL_PATH, |
|
MODEL_DTYPE, |
|
model_variant=MODEL_VARIANT, |
|
) |
|
|
|
model.vae.to("cuda") |
|
model.dit.to("cuda") |
|
model.text_encoder.to("cuda") |
|
model.vae.enable_tiling() |
|
|
|
return model |
|
|
|
|
|
model = load_model() |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def generate_video(prompt, image=None, duration=5, guidance_scale=9, video_guidance_scale=5, progress=gr.Progress(track_tqdm=True)): |
|
multiplier = 3 |
|
temp = int(duration * multiplier) + 1 |
|
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 |
|
if(image): |
|
cropped_image = center_crop(image, 640, 384) |
|
resized_image = cropped_image.resize((640, 384)) |
|
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): |
|
frames = model.generate_i2v( |
|
prompt=prompt, |
|
input_image=resized_image, |
|
num_inference_steps=[10, 10, 10], |
|
temp=temp, |
|
video_guidance_scale=video_guidance_scale, |
|
output_type="pil", |
|
save_memory=True, |
|
) |
|
else: |
|
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): |
|
frames = model.generate( |
|
prompt=prompt, |
|
num_inference_steps=[20, 20, 20], |
|
video_num_inference_steps=[10, 10, 10], |
|
height=384, |
|
width=640, |
|
temp=temp, |
|
guidance_scale=guidance_scale, |
|
video_guidance_scale=video_guidance_scale, |
|
output_type="pil", |
|
save_memory=True, |
|
) |
|
output_path = f"{str(uuid.uuid4())}_output_video.mp4" |
|
export_to_video(frames, output_path, fps=24) |
|
return output_path |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("Walone AI ဗွီဒီယိုထုတ်စနစ်") |
|
gr.Markdown("Prompt မှာ ထုတ်ချင်တဲ့ video ကို English လိုရေးပြီးထုတ်နိုင်ပါတယ်..Example prompt ကိုလေ့လာကြည့်ပါ.GPU limit ကျော်ပြီး error ပြပါက gpu refill ပြန်ပြည့်မှပြန်ထုတ်နိုင်ပါမယ်။ refill ပြန်ပြည့်ချိန်ကို မစောင့်ချင်ပါက vpn နဲ့ location ပြောင်းပြီးထုတ်နိုင်ပါတယ်") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion("Image to Video (optional)", open=False): |
|
i2v_image = gr.Image(type="pil", label="Input Image") |
|
t2v_prompt = gr.Textbox(label="Prompt") |
|
with gr.Accordion("အဆင့်မြင့် settings", open=False): |
|
t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") |
|
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=7, step=0.1, label="Guidance Scale") |
|
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale") |
|
t2v_generate_btn = gr.Button("Generate Video") |
|
with gr.Column(): |
|
t2v_output = gr.Video(label="Video ထုတ်မယ်") |
|
gr.Examples( |
|
examples=[ |
|
"A futuristic explorer, 30 years old, travels across distant galaxies in a sleek silver space suit, gliding through a glowing nebula. The scene is illuminated by vibrant starbursts and cosmic dust, captured with a futuristic drone in ultra-high-definition, showcasing vibrant purples and blues", |
|
"In a serene winter landscape, a futuristic metropolis hums with life. The camera glides along an icy street as citizens, wrapped in advanced thermal suits, enjoy the wintry scene. Holographic advertisements flicker above snow-covered buildings, while sleek flying vehicles zip overhead. In the background, delicate crystalline structures refract light through the snowflakes." |
|
], |
|
fn=generate_video, |
|
inputs=t2v_prompt, |
|
outputs=t2v_output, |
|
cache_examples="lazy" |
|
) |
|
t2v_generate_btn.click( |
|
generate_video, |
|
inputs=[t2v_prompt, i2v_image, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale], |
|
outputs=t2v_output |
|
) |
|
|
|
demo.launch() |