File size: 29,730 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
from typing import Dict, Optional, Tuple, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
try:
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
from flash_attn.bert_padding import pad_input, unpad_input, index_first_axis
from flash_attn.flash_attn_interface import flash_attn_varlen_func
except:
flash_attn_func = None
flash_attn_qkvpacked_func = None
flash_attn_varlen_func = None
print("Please install flash attention")
from trainer_misc import (
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_world_size,
all_to_all,
)
from .modeling_normalization import AdaLayerNormZero, AdaLayerNormContinuous, RMSNorm
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class VarlenFlashSelfAttentionWithT5Mask:
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None,
):
assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set"
batch_size = query.shape[0]
output_hidden = torch.zeros_like(query)
output_encoder_hidden = torch.zeros_like(encoder_query)
encoder_length = encoder_query.shape[1]
qkv_list = []
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
i_sum = 0
for i_p, length in enumerate(hidden_length):
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
indices = encoder_attention_mask[i_p]['indices']
qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices))
i_sum += length
token_lengths = [x_.shape[0] for x_ in qkv_list]
qkv = torch.cat(qkv_list, dim=0)
query, key, value = qkv.unbind(1)
cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0)
max_seqlen_q = cu_seqlens.max().item()
max_seqlen_k = max_seqlen_q
cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0))
cu_seqlens_k = cu_seqlens_q.clone()
output = flash_attn_varlen_func(
query,
key,
value,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=0.0,
causal=False,
softmax_scale=scale,
)
# To merge the tokens
i_sum = 0;token_sum = 0
for i_p, length in enumerate(hidden_length):
tot_token_num = token_lengths[i_p]
stage_output = output[token_sum : token_sum + tot_token_num]
stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length)
stage_encoder_hidden_output = stage_output[:, :encoder_length]
stage_hidden_output = stage_output[:, encoder_length:]
output_hidden[:, i_sum:i_sum+length] = stage_hidden_output
output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output
token_sum += tot_token_num
i_sum += length
output_hidden = output_hidden.flatten(2, 3)
output_encoder_hidden = output_encoder_hidden.flatten(2, 3)
return output_hidden, output_encoder_hidden
class SequenceParallelVarlenFlashSelfAttentionWithT5Mask:
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None,
):
assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set"
batch_size = query.shape[0]
qkv_list = []
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
# To sync the encoder query, key and values
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
output_hidden = torch.zeros_like(qkv[:,:,0])
output_encoder_hidden = torch.zeros_like(encoder_qkv[:,:,0])
encoder_length = encoder_qkv.shape[1]
i_sum = 0
for i_p, length in enumerate(hidden_length):
# get the query, key, value from padding sequence
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, pad_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
indices = encoder_attention_mask[i_p]['indices']
qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices))
i_sum += length
token_lengths = [x_.shape[0] for x_ in qkv_list]
qkv = torch.cat(qkv_list, dim=0)
query, key, value = qkv.unbind(1)
cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0)
max_seqlen_q = cu_seqlens.max().item()
max_seqlen_k = max_seqlen_q
cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0))
cu_seqlens_k = cu_seqlens_q.clone()
output = flash_attn_varlen_func(
query,
key,
value,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=0.0,
causal=False,
softmax_scale=scale,
)
# To merge the tokens
i_sum = 0;token_sum = 0
for i_p, length in enumerate(hidden_length):
tot_token_num = token_lengths[i_p]
stage_output = output[token_sum : token_sum + tot_token_num]
stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length * sp_group_size)
stage_encoder_hidden_output = stage_output[:, :encoder_length]
stage_hidden_output = stage_output[:, encoder_length:]
stage_hidden_output = all_to_all(stage_hidden_output, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_hidden[:, i_sum:i_sum+length] = stage_hidden_output
output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output
token_sum += tot_token_num
i_sum += length
output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_hidden = output_hidden.flatten(2, 3)
output_encoder_hidden = output_encoder_hidden.flatten(2, 3)
return output_hidden, output_encoder_hidden
class VarlenSelfAttentionWithT5Mask:
"""
For chunk stage attention without using flash attention
"""
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None,
):
assert attention_mask is not None, "The attention mask needed to be set"
encoder_length = encoder_query.shape[1]
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
i_sum = 0
output_encoder_hidden_list = []
output_hidden_list = []
for i_p, length in enumerate(hidden_length):
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim]
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=False, enable_mem_efficient=True):
stage_hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p],
)
stage_hidden_states = stage_hidden_states.transpose(1, 2).flatten(2, 3) # [bs, tot_seq, dim]
output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length])
output_hidden_list.append(stage_hidden_states[:, encoder_length:])
i_sum += length
output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s d]
output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s d -> (b n) s d')
output_hidden = torch.cat(output_hidden_list, dim=1)
return output_hidden, output_encoder_hidden
class SequenceParallelVarlenSelfAttentionWithT5Mask:
"""
For chunk stage attention without using flash attention
"""
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None,
):
assert attention_mask is not None, "The attention mask needed to be set"
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
# To sync the encoder query, key and values
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
encoder_length = encoder_qkv.shape[1]
i_sum = 0
output_encoder_hidden_list = []
output_hidden_list = []
for i_p, length in enumerate(hidden_length):
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim]
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
stage_hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p],
)
stage_hidden_states = stage_hidden_states.transpose(1, 2) # [bs, tot_seq, nhead, dim]
output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length])
output_hidden = stage_hidden_states[:, encoder_length:]
output_hidden = all_to_all(output_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_hidden_list.append(output_hidden)
i_sum += length
output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s nhead d]
output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s h d -> (b n) s h d')
output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_encoder_hidden = output_encoder_hidden.flatten(2, 3)
output_hidden = torch.cat(output_hidden_list, dim=1).flatten(2, 3)
return output_hidden, output_encoder_hidden
class JointAttention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
out_bias: bool = True,
eps: float = 1e-5,
out_dim: int = None,
context_pre_only=None,
use_flash_attn=True,
):
"""
Fixing the QKNorm, following the flux, norm the head dimension
"""
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.use_bias = bias
self.dropout = dropout
self.out_dim = out_dim if out_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.scale = dim_head**-0.5
self.heads = out_dim // dim_head if out_dim is not None else heads
self.added_kv_proj_dim = added_kv_proj_dim
if qk_norm is None:
self.norm_q = None
self.norm_k = None
elif qk_norm == "layer_norm":
self.norm_q = nn.LayerNorm(dim_head, eps=eps)
self.norm_k = nn.LayerNorm(dim_head, eps=eps)
elif qk_norm == 'rms_norm':
self.norm_q = RMSNorm(dim_head, eps=eps)
self.norm_k = RMSNorm(dim_head, eps=eps)
else:
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_k = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
self.to_v = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
if qk_norm is None:
self.norm_add_q = None
self.norm_add_k = None
elif qk_norm == "layer_norm":
self.norm_add_q = nn.LayerNorm(dim_head, eps=eps)
self.norm_add_k = nn.LayerNorm(dim_head, eps=eps)
elif qk_norm == 'rms_norm':
self.norm_add_q = RMSNorm(dim_head, eps=eps)
self.norm_add_k = RMSNorm(dim_head, eps=eps)
else:
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
self.to_out.append(nn.Dropout(dropout))
if not self.context_pre_only:
self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)
self.use_flash_attn = use_flash_attn
if flash_attn_func is None:
self.use_flash_attn = False
# print(f"Using flash-attention: {self.use_flash_attn}")
if self.use_flash_attn:
if is_sequence_parallel_initialized():
self.var_flash_attn = SequenceParallelVarlenFlashSelfAttentionWithT5Mask()
else:
self.var_flash_attn = VarlenFlashSelfAttentionWithT5Mask()
else:
if is_sequence_parallel_initialized():
self.var_len_attn = SequenceParallelVarlenSelfAttentionWithT5Mask()
else:
self.var_len_attn = VarlenSelfAttentionWithT5Mask()
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None, # [B, L, S]
hidden_length: torch.Tensor = None,
image_rotary_emb: torch.Tensor = None,
**kwargs,
) -> torch.FloatTensor:
# This function is only used during training
# `sample` projections.
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(query.shape[0], -1, self.heads, head_dim)
key = key.view(key.shape[0], -1, self.heads, head_dim)
value = value.view(value.shape[0], -1, self.heads, head_dim)
if self.norm_q is not None:
query = self.norm_q(query)
if self.norm_k is not None:
key = self.norm_k(key)
# `context` projections.
encoder_hidden_states_query_proj = self.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
encoder_hidden_states_query_proj.shape[0], -1, self.heads, head_dim
)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
encoder_hidden_states_key_proj.shape[0], -1, self.heads, head_dim
)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
encoder_hidden_states_value_proj.shape[0], -1, self.heads, head_dim
)
if self.norm_add_q is not None:
encoder_hidden_states_query_proj = self.norm_add_q(encoder_hidden_states_query_proj)
if self.norm_add_k is not None:
encoder_hidden_states_key_proj = self.norm_add_k(encoder_hidden_states_key_proj)
# To cat the hidden and encoder hidden, perform attention compuataion, and then split
if self.use_flash_attn:
hidden_states, encoder_hidden_states = self.var_flash_attn(
query, key, value,
encoder_hidden_states_query_proj, encoder_hidden_states_key_proj,
encoder_hidden_states_value_proj, self.heads, self.scale, hidden_length,
image_rotary_emb, encoder_attention_mask,
)
else:
hidden_states, encoder_hidden_states = self.var_len_attn(
query, key, value,
encoder_hidden_states_query_proj, encoder_hidden_states_key_proj,
encoder_hidden_states_value_proj, self.heads, self.scale, hidden_length,
image_rotary_emb, attention_mask,
)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if not self.context_pre_only:
encoder_hidden_states = self.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
class JointTransformerBlock(nn.Module):
r"""
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
processing of `context` conditions.
"""
def __init__(
self, dim, num_attention_heads, attention_head_dim, qk_norm=None,
context_pre_only=False, use_flash_attn=True,
):
super().__init__()
self.context_pre_only = context_pre_only
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
self.norm1 = AdaLayerNormZero(dim)
if context_norm_type == "ada_norm_continous":
self.norm1_context = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif context_norm_type == "ada_norm_zero":
self.norm1_context = AdaLayerNormZero(dim)
else:
raise ValueError(
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
)
self.attn = JointAttention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim // num_attention_heads,
heads=num_attention_heads,
out_dim=attention_head_dim,
qk_norm=qk_norm,
context_pre_only=context_pre_only,
bias=True,
use_flash_attn=use_flash_attn,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
if not context_pre_only:
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_context = None
self.ff_context = None
def forward(
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor,
encoder_attention_mask: torch.FloatTensor, temb: torch.FloatTensor,
attention_mask: torch.FloatTensor = None, hidden_length: List = None,
image_rotary_emb: torch.FloatTensor = None,
):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb, hidden_length=hidden_length)
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
else:
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb,
)
# Attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask, attention_mask=attention_mask,
hidden_length=hidden_length, image_rotary_emb=image_rotary_emb,
)
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return encoder_hidden_states, hidden_states |