File size: 24,715 Bytes
8741abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import torch
class UniversalPrompting():
def __init__(self, text_tokenizer,
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
max_text_len=8000, max_seq_len=377, ignore_id=-100, cond_dropout_prob=0.1):
"""
:param text_tokenizer: original text tokenizer
"""
self.text_tokenizer = text_tokenizer
self.text_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.text_tokenizer.add_tokens(list(special_tokens))
self.sptids_dict = {token: torch.tensor(self.text_tokenizer.convert_tokens_to_ids([token])) for token in
special_tokens}
self.sptids_dict['<|sot|>'] = torch.tensor([self.text_tokenizer.bos_token_id])
self.sptids_dict['<|eot|>'] = torch.tensor([self.text_tokenizer.eos_token_id])
self.sptids_dict['<|pad|>'] = torch.tensor([self.text_tokenizer.pad_token_id])
# plus 1 because at this time we add a task token before
self.max_text_len = max_text_len + 1
self.pad_id = self.text_tokenizer.convert_tokens_to_ids('[PAD]')
self.ignore_id = ignore_id
self.cond_dropout_prob = cond_dropout_prob
def t2i_prompt_predict_next(self, text_ids, image_ids, labels):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
probs = torch.rand(len(text_ids))
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
# randomly dropout text condition
if probs[i] < self.cond_dropout_prob:
temp_ids = [int(self.sptids_dict['<|t2i|>']), self.text_tokenizer.bos_token_id, self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * (len(temp_ids) + image_ids.shape[-1] + 3)
else:
# should add the eos token
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
# should we predict text tokens when doing image reconstruction?
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
labels[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def t2i_gen_prompt(self, text_ids, image_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
# note that, llama3 tokenizer automatically add the bot token at first but without eot
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * len(temp_ids)
else:
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0)
# language modeling
def lm_prompt(self, text_ids, max_seq_len):
sequence_ids = []
attention_masks = []
label_ids = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.eos_token_id] + text_ids[i]
temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id]
if max_seq_len >= len(temp_ids):
temp_labels_ids = temp_ids + [self.ignore_id] * (max_seq_len - len(temp_ids))
temp_ids = temp_ids + [self.pad_id] * (max_seq_len - len(temp_ids))
temp_masks = [1] * len(temp_ids) + [0] * (max_seq_len - len(temp_ids))
else:
# In language modeling, we only process text tokens. We do not add the eos token if the text length
# exceeds the max sequence length
temp_labels_ids = temp_ids[:max_seq_len]
temp_ids = temp_ids[:max_seq_len]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.tensor(temp_ids)
temp_masks = torch.tensor(temp_masks)
temp_labels_ids = torch.tensor(temp_labels_ids)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_labels_ids.unsqueeze(0))
# input_ids, masks, labels
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def mmu_prompt(self, image_ids, text_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
max_text_len = self.max_text_len - 1
for i in range(len(text_ids)):
# note that, llama3 tokenizer automatically add the bot token at first but without eot
# for empty list []
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.eos_token_id] + text_ids[i]
temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id]
if max_text_len >= len(temp_ids):
# minus 1 because task token was prepended to the former image tokens
temp_ids = temp_ids + [self.pad_id] * (max_text_len - len(temp_ids))
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) + [0] * (max_text_len - len(temp_ids))
else:
# should add the eos token
temp_ids = temp_ids[:max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
torch.tensor([self.ignore_id]).to(device),
torch.tensor([self.ignore_id]).to(device),
torch.ones_like(image_ids[i]) * self.ignore_id,
torch.tensor([self.ignore_id]).to(device),
torch.tensor(temp_ids).to(device),
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
self.sptids_dict['<|mmu|>'].to(device), # task token
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device),
torch.tensor(temp_ids).to(device),
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def t2v_prompt(self, text_ids, video_ids):
"""
:param text_ids:
:param video_ids:
:return:
"""
pass
def i2v_prompt(self, image_ids, video_ids):
"""
:param image_ids:
:param video_ids:
:return:
"""
pass
def lvg_prompt(self, text_ids, image_ids, labels):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
probs = torch.rand(len(text_ids))
probs2 = torch.rand(len(text_ids))
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
# randomly dropout text condition
if probs[i] < self.cond_dropout_prob:
temp_ids = [int(self.sptids_dict['<|t2i|>']), self.text_tokenizer.bos_token_id,
self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * (len(temp_ids) + image_ids.shape[-1] + 3)
else:
# should add the eos token
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
# should we predict text tokens when doing image reconstruction?
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
labels[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def lvg_gen_prompt(self, text_ids, image_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
# note that, llama3 tokenizer automatically add the bot token at first but without eot
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * len(temp_ids)
else:
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0)
def mask_prompt(self):
pass
def __call__(self, input, task, padding=True, config=None):
"""
input (tuple) : data pairs contain text(str), image(tensor), or videos(tensor).
task (str) : a flag indicates the current task.
"""
if task == "t2i":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt(text_ids, image_ids, input[2])
elif task == "t2i_predict_next":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt_predict_next(text_ids, image_ids, input[2])
elif task == "t2i_predict_next_plus_lm":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt_predict_next(text_ids[:config.training.batch_size], image_ids,
input[2])
sequence_ids_with_masks_lm = self.lm_prompt(text_ids[config.training.batch_size:], input[3])
return sequence_ids_with_masks, sequence_ids_with_masks_lm
elif task == "t2i_gen":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_gen_prompt(text_ids, image_ids)
elif task == "lm":
text_ids = self.text_tokenizer(input[0], truncation=True)['input_ids'] # (B, max_len)
sequence_ids_with_masks = self.lm_prompt(text_ids, input[1])
elif task == "mmu":
image_ids = input[0]
text_ids = self.text_tokenizer(input[1])['input_ids']
sequence_ids_with_masks = self.mmu_prompt(image_ids, text_ids)
elif task == "t2v":
text_ids = self.text_tokenizer(input[0]['input_ids'])
video_ids = self.vision_tokenizer(input[1])
sequence_ids_with_masks = self.t2v_prompt(text_ids, video_ids)
elif task == "i2v":
image_ids = self.text_tokenizer(input[0])
video_ids = self.vision_tokenizer(input[1])
sequence_ids_with_masks = self.i2v_prompt(image_ids, video_ids)
elif task == "lvg":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.lvg_prompt(text_ids, image_ids, input[2])
elif task == "lvg_gen":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.lvg_gen_prompt(text_ids, image_ids)
else:
raise NotImplementedError
return sequence_ids_with_masks
def create_attention_mask_predict_next(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, rm_pad_in_image=False,
return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
is_start_image = sequence == soi_id
is_end_image = sequence == eoi_id
# Create cumulative sum masks to identify regions of image tokens
cumulative_start = torch.cumsum(is_start_image, dim=1)
cumulative_end = torch.cumsum(is_end_image, dim=1)
in_image_segment = (cumulative_start > cumulative_end) | is_start_image | is_end_image
is_text = ~(in_image_segment)
causal_mask = torch.tril(torch.ones((L, L), dtype=torch.bool)).to(sequence.device)
mask_text = is_text[:, :, None] * causal_mask[None, :, :]
is_text_image = is_text | in_image_segment
mask_text_image_bi = is_text_image[:, :, None] * is_text_image[:, None, :]
if rm_pad_in_image:
sid_img = torch.where(sequence == soi_id)[1]
for i in range(mask_text_image_bi.shape[0]):
pad_end_idx = torch.where(sequence[i] == pad_id)
if len(pad_end_idx[0]) != 0:
pad_end_idx = pad_end_idx[0][-1]
mask_text[i][pad_end_idx + 1:, :pad_end_idx + 1] = 0
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
mask_text[in_image_segment] = mask_text_image_bi[in_image_segment]
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text.unsqueeze(1)
def create_attention_mask_lvg(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
mask_text_image_bi = torch.tril(torch.ones(N, L, L), diagonal=0).to(sequence.device)
sid_img = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)[:, 0]
sid_img_for_bi = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_img_for_bi = torch.where(sequence == eoi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
for i in range(N):
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
for j in range(sid_img_for_bi.shape[-1]):
mask_text_image_bi[i][sid_img_for_bi[i, j]:eid_img_for_bi[i, j] + 1,
sid_img_for_bi[i, j]:eid_img_for_bi[i, j] + 1] = 1
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text_image_bi.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text_image_bi.unsqueeze(1)
# texts without attending image regions
def create_attention_mask_lvg_v2(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, sot_id=1000, eot_id=1001, return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
# is_text = torch.where(sequence < 2000, True, False)
is_text = torch.where(sequence < pad_id, True, False)
mask_text_image_bi = torch.tril(torch.ones(N, L, L), diagonal=0).to(sequence.device).int()
sid_text_for_bi = torch.where(sequence == sot_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_text_for_bi = torch.where(sequence == eot_id)[1].reshape(mask_text_image_bi.shape[0], -1)
# import ipdb
# ipdb.set_trace()
if sot_id == eot_id:
if sid_text_for_bi.shape[-1] % 2 != 0:
sid_text_for_bi = sid_text_for_bi[:, :-1]
eid_text_for_bi = eid_text_for_bi[:, :-1]
select_idx = [i for i in range(0, sid_text_for_bi.shape[1], 2)]
sid_text_for_bi = sid_text_for_bi[:, select_idx]
select_idx = [i+1 for i in range(0, eid_text_for_bi.shape[1], 2)]
eid_text_for_bi = eid_text_for_bi[:, select_idx]
sid_img_for_bi = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_img_for_bi = torch.where(sequence == eoi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
all_zeros = torch.zeros_like(mask_text_image_bi).int()
for i in range(N):
all_zeros[i, :, is_text[i]] = 1
for j in range(sid_text_for_bi.shape[-1]):
all_zeros[i][is_text[i], sid_text_for_bi[i, j]:eid_text_for_bi[i, j]+1] = 1
all_zeros[i][~is_text[i], sid_text_for_bi[i, j]:eid_text_for_bi[i, j]+1] = 1
for j in range(sid_img_for_bi.shape[-1]):
all_zeros[i][~is_text[i], sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1] = 1
mask_text_image_bi = mask_text_image_bi * all_zeros
sid_img = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)[:, 0]
for i in range(N):
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
for j in range(sid_img_for_bi.shape[-1]):
mask_text_image_bi[i][sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1, sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1] = 1
mask_text_image_bi[:, :, 0] = 1
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text_image_bi.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text_image_bi.unsqueeze(1)
def create_attention_mask_for_mmu(sequence, eoi_id=128258, return_inverse_mask=True):
N, L = sequence.shape
causal_mask = torch.tril(torch.ones((N, 1, L, L), dtype=torch.bool)).to(sequence.device)
eoi_image = torch.where(sequence == eoi_id)[1]
causal_mask[:, :, :, :eoi_image[0] + 1] = 1
if return_inverse_mask:
inverted_mask = 1.0 - causal_mask.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask
else:
return causal_mask
def create_attention_mask_for_mmu_vit(
sequence,
return_inverse_mask=True,
system_prompt_len=0
):
N, L, H = sequence.shape
causal_mask = torch.tril(torch.ones((N, 1, L, L), dtype=torch.bool)).to(sequence.device)
index = 1 + system_prompt_len + 1 + 576
causal_mask[:, :, :, :index] = 1
if return_inverse_mask:
inverted_mask = 1.0 - causal_mask.type(torch.int64)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(torch.int64).min
)
return inverted_mask
else:
return causal_mask
if __name__ == '__main__':
pass |