Spaces:
Runtime error
Runtime error
File size: 16,627 Bytes
c25f2ae 27a9b54 c25f2ae 9d95507 c25f2ae 27a9b54 c25f2ae 27a9b54 c25f2ae 27a9b54 c25f2ae edfcc3f c25f2ae 672ba8c c25f2ae 672ba8c c25f2ae 672ba8c c25f2ae 9d95507 c25f2ae 27a9b54 c25f2ae 672ba8c c25f2ae 672ba8c c25f2ae 528505f c25f2ae 9d95507 c25f2ae 9d95507 c25f2ae d334f4b c25f2ae 27a9b54 c25f2ae 9d95507 c25f2ae 9d95507 c25f2ae 9d95507 c25f2ae 672ba8c c25f2ae 528505f c25f2ae d42d2a5 c25f2ae d42d2a5 c25f2ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import subprocess, os, sys
result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True)
print(f"pip install GroundingDINO = {result}")
sys.path.insert(0, "./GroundingDINO")
if not os.path.exists("./sam_vit_h_4b8939.pth"):
result = subprocess.run(
[
"wget",
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
],
check=True,
)
print(f"wget sam_vit_h_4b8939.pth result = {result}")
import gradio as gr
import argparse
import random
import warnings
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from scipy import ndimage
from PIL import Image
from huggingface_hub import hf_hub_download
from segments.export import colorize
from segments.utils import bitmap2file
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import (
clean_state_dict,
)
from GroundingDINO.groundingdino.util.inference import annotate, predict
# segment anything
from segment_anything import build_sam, SamPredictor
# CLIPSeg
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
def load_model_hf(model_config_path, repo_id, filename, device):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location=device)
log = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
model = model.to(device)
return model
def load_image_for_dino(image):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
dino_image, _ = transform(image, None)
return dino_image
def dino_detection(
model,
image,
image_array,
category_names,
category_name_to_id,
box_threshold,
text_threshold,
device,
visualize=False,
):
detection_prompt = " . ".join(category_names)
dino_image = load_image_for_dino(image)
dino_image = dino_image.to(device)
with torch.no_grad():
boxes, logits, phrases = predict(
model=model,
image=dino_image,
caption=detection_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=device,
)
category_ids = [category_name_to_id[phrase] for phrase in phrases]
if visualize:
annotated_frame = annotate(
image_source=image_array, boxes=boxes, logits=logits, phrases=phrases
)
annotated_frame = annotated_frame[..., ::-1] # BGR to RGB
visualization = Image.fromarray(annotated_frame)
return boxes, category_ids, visualization
else:
return boxes, category_ids
def sam_masks_from_dino_boxes(predictor, image_array, boxes, device):
# box: normalized box xywh -> unnormalized xyxy
H, W, _ = image_array.shape
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
transformed_boxes = predictor.transform.apply_boxes_torch(
boxes_xyxy, image_array.shape[:2]
).to(device)
thing_masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
return thing_masks
def preds_to_semantic_inds(preds, threshold):
flat_preds = preds.reshape((preds.shape[0], -1))
# Initialize a dummy "unlabeled" mask with the threshold
flat_preds_with_treshold = torch.full(
(preds.shape[0] + 1, flat_preds.shape[-1]), threshold
)
flat_preds_with_treshold[1 : preds.shape[0] + 1, :] = flat_preds
# Get the top mask index for each pixel
semantic_inds = torch.topk(flat_preds_with_treshold, 1, dim=0).indices.reshape(
(preds.shape[-2], preds.shape[-1])
)
return semantic_inds
def clipseg_segmentation(
processor, model, image, category_names, background_threshold, device
):
inputs = processor(
text=category_names,
images=[image] * len(category_names),
padding="max_length",
return_tensors="pt",
).to(device)
with torch.no_grad():
outputs = model(**inputs)
# resize the outputs
logits = nn.functional.interpolate(
outputs.logits.unsqueeze(1),
size=(image.size[1], image.size[0]),
mode="bilinear",
)
preds = torch.sigmoid(logits.squeeze())
semantic_inds = preds_to_semantic_inds(preds, background_threshold)
return preds, semantic_inds
def semantic_inds_to_shrunken_bool_masks(
semantic_inds, shrink_kernel_size, num_categories
):
shrink_kernel = np.ones((shrink_kernel_size, shrink_kernel_size))
bool_masks = torch.zeros((num_categories, *semantic_inds.shape), dtype=bool)
for category in range(num_categories):
binary_mask = semantic_inds == category
shrunken_binary_mask_array = ndimage.binary_erosion(
binary_mask.numpy(), structure=shrink_kernel
)
bool_masks[category] = torch.from_numpy(shrunken_binary_mask_array)
return bool_masks
def clip_and_shrink_preds(semantic_inds, preds, shrink_kernel_size, num_categories):
# convert semantic_inds to shrunken bool masks
bool_masks = semantic_inds_to_shrunken_bool_masks(
semantic_inds, shrink_kernel_size, num_categories
).to(preds.device)
sizes = [
torch.sum(bool_masks[i].int()).item() for i in range(1, bool_masks.size(0))
]
max_size = max(sizes)
relative_sizes = [size / max_size for size in sizes]
# use bool masks to clip preds
clipped_preds = torch.zeros_like(preds)
for i in range(1, bool_masks.size(0)):
float_mask = bool_masks[i].float()
clipped_preds[i - 1] = preds[i - 1] * float_mask
return clipped_preds, relative_sizes
def sample_points_based_on_preds(preds, N):
height, width = preds.shape
weights = preds.ravel()
indices = np.arange(height * width)
# Randomly sample N indices based on the weights
sampled_indices = random.choices(indices, weights=weights, k=N)
# Convert the sampled indices into (col, row) coordinates
sampled_points = [(index % width, index // width) for index in sampled_indices]
return sampled_points
def upsample_pred(pred, image_source):
pred = pred.unsqueeze(dim=0)
original_height = image_source.shape[0]
original_width = image_source.shape[1]
larger_dim = max(original_height, original_width)
aspect_ratio = original_height / original_width
# upsample the tensor to the larger dimension
upsampled_tensor = F.interpolate(
pred, size=(larger_dim, larger_dim), mode="bilinear", align_corners=False
)
# remove the padding (at the end) to get the original image resolution
if original_height > original_width:
target_width = int(upsampled_tensor.shape[3] * aspect_ratio)
upsampled_tensor = upsampled_tensor[:, :, :, :target_width]
else:
target_height = int(upsampled_tensor.shape[2] * aspect_ratio)
upsampled_tensor = upsampled_tensor[:, :, :target_height, :]
return upsampled_tensor.squeeze()
def sam_mask_from_points(predictor, image_array, points):
points_array = np.array(points)
# we only sample positive points, so labels are all 1
points_labels = np.ones(len(points))
# we don't use predict_torch here cause it didn't seem to work...
_, _, logits = predictor.predict(
point_coords=points_array,
point_labels=points_labels,
)
# max over the 3 segmentation levels
total_pred = torch.max(torch.sigmoid(torch.tensor(logits)), dim=0)[0].unsqueeze(
dim=0
)
# logits are 256x256 -> upsample back to image shape
upsampled_pred = upsample_pred(total_pred, image_array)
return upsampled_pred
def generate_panoptic_mask(
image,
thing_category_names_string,
stuff_category_names_string,
dino_box_threshold=0.3,
dino_text_threshold=0.25,
segmentation_background_threshold=0.1,
shrink_kernel_size=20,
num_samples_factor=1000,
):
# parse inputs
thing_category_names = [
thing_category_name.strip()
for thing_category_name in thing_category_names_string.split(",")
]
stuff_category_names = [
stuff_category_name.strip()
for stuff_category_name in stuff_category_names_string.split(",")
]
category_names = thing_category_names + stuff_category_names
category_name_to_id = {
category_name: i for i, category_name in enumerate(category_names)
}
image = image.convert("RGB")
image_array = np.asarray(image)
# detect boxes for "thing" categories using Grounding DINO
thing_boxes, _ = dino_detection(
dino_model,
image,
image_array,
thing_category_names,
category_name_to_id,
dino_box_threshold,
dino_text_threshold,
device,
)
# compute SAM image embedding
sam_predictor.set_image(image_array)
# get segmentation masks for the thing boxes
thing_masks = sam_masks_from_dino_boxes(
sam_predictor, image_array, thing_boxes, device
)
# get rough segmentation masks for "stuff" categories using CLIPSeg
clipseg_preds, clipseg_semantic_inds = clipseg_segmentation(
clipseg_processor,
clipseg_model,
image,
stuff_category_names,
segmentation_background_threshold,
device,
)
# remove things from stuff masks
combined_things_mask = torch.any(thing_masks, dim=0)
clipseg_semantic_inds_without_things = clipseg_semantic_inds.clone()
clipseg_semantic_inds_without_things[combined_things_mask[0]] = 0
# clip CLIPSeg preds based on non-overlapping semantic segmentation inds (+ optionally shrink the mask of each category)
# also returns the relative size of each category
clipsed_clipped_preds, relative_sizes = clip_and_shrink_preds(
clipseg_semantic_inds_without_things,
clipseg_preds,
shrink_kernel_size,
len(stuff_category_names) + 1,
)
# get finer segmentation masks for the "stuff" categories using SAM
sam_preds = torch.zeros_like(clipsed_clipped_preds)
for i in range(clipsed_clipped_preds.shape[0]):
clipseg_pred = clipsed_clipped_preds[i]
# for each "stuff" category, sample points in the rough segmentation mask
num_samples = int(relative_sizes[i] * num_samples_factor)
if num_samples == 0:
continue
points = sample_points_based_on_preds(clipseg_pred.cpu().numpy(), num_samples)
if len(points) == 0:
continue
# use SAM to get mask for points
pred = sam_mask_from_points(sam_predictor, image_array, points)
sam_preds[i] = pred
sam_semantic_inds = preds_to_semantic_inds(
sam_preds, segmentation_background_threshold
)
# combine the thing inds and the stuff inds into panoptic inds
panoptic_inds = sam_semantic_inds.clone()
ind = len(stuff_category_names) + 1
for thing_mask in thing_masks:
# overlay thing mask on panoptic inds
panoptic_inds[thing_mask.squeeze()] = ind
ind += 1
fig = plt.figure()
plt.imshow(image)
plt.imshow(colorize(panoptic_inds), alpha=0.5)
return fig
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filename = "groundingdino_swint_ogc.pth"
sam_checkpoint = "./sam_vit_h_4b8939.pth"
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using device:", device)
if device != "cpu":
try:
from GroundingDINO.groundingdino import _C
except:
warnings.warn(
"Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!"
)
# initialize groundingdino model
dino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, device)
# initialize SAM
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
clipseg_model = CLIPSegForImageSegmentation.from_pretrained(
"CIDAS/clipseg-rd64-refined"
)
clipseg_model.to(device)
title = "Interactive demo: panoptic segment anything"
description = "Demo for zero-shot panoptic segmentation using Segment Anything, Grounding DINO, and CLIPSeg. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'."
article = "<p style='text-align: center'><a href='https://github.com/segments-ai/panoptic-segment-anything'>Github</a></p>"
examples = [
["a2d2.png", "car, bus, person", "road, sky, buildings", 0.3, 0.25, 0.1, 20, 1000],
["dogs.png", "dog, wooden stick", "sky, sand"],
["bxl.png", "car, tram, motorcycle, person", "road, buildings, sky"],
]
if __name__ == "__main__":
parser = argparse.ArgumentParser("Panoptic Segment Anything demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
print(f"args = {args}")
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
input_image = gr.Image(source="upload", type="pil")
thing_category_names_string = gr.Textbox(
label="Thing categories (i.e. categories with instances), comma-separated",
placeholder="E.g. car, bus, person",
)
stuff_category_names_string = gr.Textbox(
label="Stuff categories (i.e. categories without instances), comma-separated",
placeholder="E.g. sky, road, buildings",
)
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Grounding DINO box threshold",
minimum=0.0,
maximum=1.0,
value=0.3,
step=0.001,
)
text_threshold = gr.Slider(
label="Grounding DINO text threshold",
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.001,
)
segmentation_background_threshold = gr.Slider(
label="Segmentation background threshold (under this threshold, a pixel is considered background)",
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.001,
)
shrink_kernel_size = gr.Slider(
label="Shrink kernel size (how much to shrink the mask before sampling points)",
minimum=0,
maximum=100,
value=20,
step=1,
)
num_samples_factor = gr.Slider(
label="Number of samples factor (how many points to sample in the largest category)",
minimum=0,
maximum=1000,
value=1000,
step=1,
)
with gr.Column():
plot = gr.Plot()
run_button.click(
fn=generate_panoptic_mask,
inputs=[
input_image,
thing_category_names_string,
stuff_category_names_string,
box_threshold,
text_threshold,
segmentation_background_threshold,
shrink_kernel_size,
num_samples_factor,
],
outputs=[plot],
)
block.launch(server_name="0.0.0.0", debug=args.debug, share=args.share)
|