komodel / models /vocoders /vocoder_inference.py
RMSnow's picture
init and interface
df2accb
raw
history blame
18.3 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
import json
import json5
import time
import accelerate
import random
import numpy as np
import shutil
from pathlib import Path
from tqdm import tqdm
from glob import glob
from accelerate.logging import get_logger
from torch.utils.data import DataLoader
from models.vocoders.vocoder_dataset import (
VocoderDataset,
VocoderCollator,
VocoderConcatDataset,
)
from models.vocoders.gan.generator import bigvgan, hifigan, melgan, nsfhifigan, apnet
from models.vocoders.flow.waveglow import waveglow
from models.vocoders.diffusion.diffwave import diffwave
from models.vocoders.autoregressive.wavenet import wavenet
from models.vocoders.autoregressive.wavernn import wavernn
from models.vocoders.gan import gan_vocoder_inference
from utils.io import save_audio
_vocoders = {
"diffwave": diffwave.DiffWave,
"wavernn": wavernn.WaveRNN,
"wavenet": wavenet.WaveNet,
"waveglow": waveglow.WaveGlow,
"nsfhifigan": nsfhifigan.NSFHiFiGAN,
"bigvgan": bigvgan.BigVGAN,
"hifigan": hifigan.HiFiGAN,
"melgan": melgan.MelGAN,
"apnet": apnet.APNet,
}
_vocoder_infer_funcs = {
# "world": world_inference.synthesis_audios,
# "wavernn": wavernn_inference.synthesis_audios,
# "wavenet": wavenet_inference.synthesis_audios,
# "diffwave": diffwave_inference.synthesis_audios,
"nsfhifigan": gan_vocoder_inference.synthesis_audios,
"bigvgan": gan_vocoder_inference.synthesis_audios,
"melgan": gan_vocoder_inference.synthesis_audios,
"hifigan": gan_vocoder_inference.synthesis_audios,
"apnet": gan_vocoder_inference.synthesis_audios,
}
class VocoderInference(object):
def __init__(self, args=None, cfg=None, infer_type="from_dataset"):
super().__init__()
start = time.monotonic_ns()
self.args = args
self.cfg = cfg
self.infer_type = infer_type
# Init accelerator
self.accelerator = accelerate.Accelerator()
self.accelerator.wait_for_everyone()
# Get logger
with self.accelerator.main_process_first():
self.logger = get_logger("inference", log_level=args.log_level)
# Log some info
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New inference process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.vocoder_dir = args.vocoder_dir
self.logger.debug(f"Vocoder dir: {args.vocoder_dir}")
os.makedirs(args.output_dir, exist_ok=True)
if os.path.exists(os.path.join(args.output_dir, "pred")):
shutil.rmtree(os.path.join(args.output_dir, "pred"))
if os.path.exists(os.path.join(args.output_dir, "gt")):
shutil.rmtree(os.path.join(args.output_dir, "gt"))
os.makedirs(os.path.join(args.output_dir, "pred"), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, "gt"), exist_ok=True)
# Set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(self.cfg.train.random_seed)
end = time.monotonic_ns()
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
# Setup inference mode
if self.infer_type == "infer_from_dataset":
self.cfg.dataset = self.args.infer_datasets
elif self.infer_type == "infer_from_feature":
self._build_tmp_dataset_from_feature()
self.cfg.dataset = ["tmp"]
elif self.infer_type == "infer_from_audio":
self._build_tmp_dataset_from_audio()
self.cfg.dataset = ["tmp"]
# Setup data loader
with self.accelerator.main_process_first():
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.test_dataloader = self._build_dataloader()
end = time.monotonic_ns()
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
# Build model
with self.accelerator.main_process_first():
self.logger.info("Building model...")
start = time.monotonic_ns()
self.model = self._build_model()
end = time.monotonic_ns()
self.logger.info(f"Building model done in {(end - start) / 1e6:.3f}ms")
# Init with accelerate
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
self.accelerator = accelerate.Accelerator()
(self.model, self.test_dataloader) = self.accelerator.prepare(
self.model, self.test_dataloader
)
end = time.monotonic_ns()
self.accelerator.wait_for_everyone()
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.3f}ms")
with self.accelerator.main_process_first():
self.logger.info("Loading checkpoint...")
start = time.monotonic_ns()
if os.path.isdir(args.vocoder_dir):
if os.path.isdir(os.path.join(args.vocoder_dir, "checkpoint")):
self._load_model(os.path.join(args.vocoder_dir, "checkpoint"))
else:
self._load_model(os.path.join(args.vocoder_dir))
else:
self._load_model(os.path.join(args.vocoder_dir))
end = time.monotonic_ns()
self.logger.info(f"Loading checkpoint done in {(end - start) / 1e6:.3f}ms")
self.model.eval()
self.accelerator.wait_for_everyone()
def _build_tmp_dataset_from_feature(self):
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
utts = []
mels = glob(os.path.join(self.args.feature_folder, "mels", "*.npy"))
for i, mel in enumerate(mels):
uid = mel.split("/")[-1].split(".")[0]
utt = {"Dataset": "tmp", "Uid": uid, "index": i}
utts.append(utt)
os.makedirs(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "test.json"), "w"
) as f:
json.dump(utts, f)
meta_info = {"dataset": "tmp", "test": {"size": len(utts)}}
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "meta_info.json"),
"w",
) as f:
json.dump(meta_info, f)
features = glob(os.path.join(self.args.feature_folder, "*"))
for feature in features:
feature_name = feature.split("/")[-1]
if os.path.isfile(feature):
continue
shutil.copytree(
os.path.join(self.args.feature_folder, feature_name),
os.path.join(self.cfg.preprocess.processed_dir, "tmp", feature_name),
)
def _build_tmp_dataset_from_audio(self):
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
utts = []
audios = glob(os.path.join(self.args.audio_folder, "*"))
for i, audio in enumerate(audios):
uid = audio.split("/")[-1].split(".")[0]
utt = {"Dataset": "tmp", "Uid": uid, "index": i, "Path": audio}
utts.append(utt)
os.makedirs(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "test.json"), "w"
) as f:
json.dump(utts, f)
meta_info = {"dataset": "tmp", "test": {"size": len(utts)}}
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "meta_info.json"),
"w",
) as f:
json.dump(meta_info, f)
from processors import acoustic_extractor
acoustic_extractor.extract_utt_acoustic_features_serial(
utts, os.path.join(self.cfg.preprocess.processed_dir, "tmp"), self.cfg
)
def _build_test_dataset(self):
return VocoderDataset, VocoderCollator
def _build_model(self):
model = _vocoders[self.cfg.model.generator](self.cfg)
return model
def _build_dataloader(self):
"""Build dataloader which merges a series of datasets."""
Dataset, Collator = self._build_test_dataset()
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
test_dataset = VocoderConcatDataset(datasets_list, full_audio_inference=False)
test_collate = Collator(self.cfg)
test_batch_size = min(self.cfg.inference.batch_size, len(test_dataset))
test_dataloader = DataLoader(
test_dataset,
collate_fn=test_collate,
num_workers=1,
batch_size=test_batch_size,
shuffle=False,
)
self.test_batch_size = test_batch_size
self.test_dataset = test_dataset
return test_dataloader
def _load_model(self, checkpoint_dir, from_multi_gpu=False):
"""Load model from checkpoint. If a folder is given, it will
load the latest checkpoint in checkpoint_dir. If a path is given
it will load the checkpoint specified by checkpoint_path.
**Only use this method after** ``accelerator.prepare()``.
"""
if os.path.isdir(checkpoint_dir):
if "epoch" in checkpoint_dir and "step" in checkpoint_dir:
checkpoint_path = checkpoint_dir
else:
# Load the latest accelerator state dicts
ls = [
str(i)
for i in Path(checkpoint_dir).glob("*")
if not "audio" in str(i)
]
ls.sort(
key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True
)
checkpoint_path = ls[0]
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.model),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
return str(checkpoint_path)
else:
# Load old .pt checkpoints
if self.cfg.model.generator in [
"bigvgan",
"hifigan",
"melgan",
"nsfhifigan",
]:
ckpt = torch.load(
checkpoint_dir,
map_location=torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu"),
)
if from_multi_gpu:
pretrained_generator_dict = ckpt["generator_state_dict"]
generator_dict = self.model.state_dict()
new_generator_dict = {
k.split("module.")[-1]: v
for k, v in pretrained_generator_dict.items()
if (
k.split("module.")[-1] in generator_dict
and v.shape == generator_dict[k.split("module.")[-1]].shape
)
}
generator_dict.update(new_generator_dict)
self.model.load_state_dict(generator_dict)
else:
self.model.load_state_dict(ckpt["generator_state_dict"])
else:
self.model.load_state_dict(torch.load(checkpoint_dir)["state_dict"])
return str(checkpoint_dir)
def inference(self):
"""Inference via batches"""
for i, batch in tqdm(enumerate(self.test_dataloader)):
if self.cfg.preprocess.use_frame_pitch:
audio_pred = self.model.forward(
batch["mel"].transpose(-1, -2), batch["frame_pitch"].float()
).cpu()
elif self.cfg.preprocess.extract_amplitude_phase:
audio_pred = self.model.forward(batch["mel"].transpose(-1, -2))[-1]
else:
audio_pred = (
self.model.forward(batch["mel"].transpose(-1, -2)).detach().cpu()
)
audio_ls = audio_pred.chunk(self.test_batch_size)
audio_gt_ls = batch["audio"].cpu().chunk(self.test_batch_size)
length_ls = batch["target_len"].cpu().chunk(self.test_batch_size)
j = 0
for it, it_gt, l in zip(audio_ls, audio_gt_ls, length_ls):
l = l.item()
it = it.squeeze(0).squeeze(0)[: l * self.cfg.preprocess.hop_size]
it_gt = it_gt.squeeze(0)[: l * self.cfg.preprocess.hop_size]
uid = self.test_dataset.metadata[i * self.test_batch_size + j]["Uid"]
save_audio(
os.path.join(self.args.output_dir, "pred", "{}.wav").format(uid),
it,
self.cfg.preprocess.sample_rate,
)
save_audio(
os.path.join(self.args.output_dir, "gt", "{}.wav").format(uid),
it_gt,
self.cfg.preprocess.sample_rate,
)
j += 1
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
def _set_random_seed(self, seed):
"""Set random seed for all possible random modules."""
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def _count_parameters(self, model):
return sum(p.numel() for p in model.parameters())
def _dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)
def load_nnvocoder(
cfg,
vocoder_name,
weights_file,
from_multi_gpu=False,
):
"""Load the specified vocoder.
cfg: the vocoder config filer.
weights_file: a folder or a .pt path.
from_multi_gpu: automatically remove the "module" string in state dicts if "True".
"""
print("Loading Vocoder from Weights file: {}".format(weights_file))
# Build model
model = _vocoders[vocoder_name](cfg)
if not os.path.isdir(weights_file):
# Load from .pt file
if vocoder_name in ["bigvgan", "hifigan", "melgan", "nsfhifigan"]:
ckpt = torch.load(
weights_file,
map_location=torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu"),
)
if from_multi_gpu:
pretrained_generator_dict = ckpt["generator_state_dict"]
generator_dict = model.state_dict()
new_generator_dict = {
k.split("module.")[-1]: v
for k, v in pretrained_generator_dict.items()
if (
k.split("module.")[-1] in generator_dict
and v.shape == generator_dict[k.split("module.")[-1]].shape
)
}
generator_dict.update(new_generator_dict)
model.load_state_dict(generator_dict)
else:
model.load_state_dict(ckpt["generator_state_dict"])
else:
model.load_state_dict(torch.load(weights_file)["state_dict"])
else:
# Load from accelerator state dict
weights_file = os.path.join(weights_file, "checkpoint")
ls = [str(i) for i in Path(weights_file).glob("*") if not "audio" in str(i)]
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
checkpoint_path = ls[0]
accelerator = accelerate.Accelerator()
model = accelerator.prepare(model)
accelerator.load_state(checkpoint_path)
if torch.cuda.is_available():
model = model.cuda()
model = model.eval()
return model
def tensorize(data, device, n_samples):
"""
data: a list of numpy array
"""
assert type(data) == list
if n_samples:
data = data[:n_samples]
data = [torch.as_tensor(x, device=device) for x in data]
return data
def synthesis(
cfg,
vocoder_weight_file,
n_samples,
pred,
f0s=None,
batch_size=64,
fast_inference=False,
):
"""Synthesis audios from a given vocoder and series of given features.
cfg: vocoder config.
vocoder_weight_file: a folder of accelerator state dict or a path to the .pt file.
pred: a list of numpy arrays. [(seq_len1, acoustic_features_dim), (seq_len2, acoustic_features_dim), ...]
"""
vocoder_name = cfg.model.generator
print("Synthesis audios using {} vocoder...".format(vocoder_name))
###### TODO: World Vocoder Refactor ######
# if vocoder_name == "world":
# world_inference.synthesis_audios(
# cfg, dataset_name, split, n_samples, pred, save_dir, tag
# )
# return
# ====== Loading neural vocoder model ======
vocoder = load_nnvocoder(
cfg, vocoder_name, weights_file=vocoder_weight_file, from_multi_gpu=True
)
device = next(vocoder.parameters()).device
# ====== Inference for predicted acoustic features ======
# pred: (frame_len, n_mels) -> (n_mels, frame_len)
mels_pred = tensorize([p.T for p in pred], device, n_samples)
print("For predicted mels, #sample = {}...".format(len(mels_pred)))
audios_pred = _vocoder_infer_funcs[vocoder_name](
cfg,
vocoder,
mels_pred,
f0s=f0s,
batch_size=batch_size,
fast_inference=fast_inference,
)
return audios_pred