Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import os | |
import json5 | |
from collections import OrderedDict | |
from tqdm import tqdm | |
import json | |
import shutil | |
from models.svc.base import SVCTrainer | |
from modules.encoder.condition_encoder import ConditionEncoder | |
from models.svc.comosvc.comosvc import ComoSVC | |
class ComoSVCTrainer(SVCTrainer): | |
r"""The base trainer for all diffusion models. It inherits from SVCTrainer and | |
implements ``_build_model`` and ``_forward_step`` methods. | |
""" | |
def __init__(self, args=None, cfg=None): | |
SVCTrainer.__init__(self, args, cfg) | |
self.distill = cfg.model.comosvc.distill | |
self.skip_diff = True | |
if self.distill: # and args.resume is None: | |
self.teacher_model_path = cfg.model.teacher_model_path | |
self.teacher_state_dict = self._load_teacher_state_dict() | |
self._load_teacher_model(self.teacher_state_dict) | |
self.acoustic_mapper.decoder.init_consistency_training() | |
### Following are methods only for comoSVC models ### | |
def _load_teacher_state_dict(self): | |
self.checkpoint_file = self.teacher_model_path | |
print("Load teacher acoustic model from {}".format(self.checkpoint_file)) | |
raw_state_dict = torch.load(self.checkpoint_file) # , map_location=self.device) | |
return raw_state_dict | |
def _load_teacher_model(self, state_dict): | |
raw_dict = state_dict | |
clean_dict = OrderedDict() | |
for k, v in raw_dict.items(): | |
if k.startswith("module."): | |
clean_dict[k[7:]] = v | |
else: | |
clean_dict[k] = v | |
self.model.load_state_dict(clean_dict) | |
def _build_model(self): | |
r"""Build the model for training. This function is called in ``__init__`` function.""" | |
# TODO: sort out the config | |
self.cfg.model.condition_encoder.f0_min = self.cfg.preprocess.f0_min | |
self.cfg.model.condition_encoder.f0_max = self.cfg.preprocess.f0_max | |
self.condition_encoder = ConditionEncoder(self.cfg.model.condition_encoder) | |
self.acoustic_mapper = ComoSVC(self.cfg) | |
model = torch.nn.ModuleList([self.condition_encoder, self.acoustic_mapper]) | |
return model | |
def _forward_step(self, batch): | |
r"""Forward step for training and inference. This function is called | |
in ``_train_step`` & ``_test_step`` function. | |
""" | |
loss = {} | |
mask = batch["mask"] | |
mel_input = batch["mel"] | |
cond = self.condition_encoder(batch) | |
if self.distill: | |
cond = cond.detach() | |
self.skip_diff = True if self.step < self.cfg.train.fast_steps else False | |
ssim_loss, prior_loss, diff_loss = self.acoustic_mapper.compute_loss( | |
mask, cond, mel_input, skip_diff=self.skip_diff | |
) | |
if self.distill: | |
loss["distil_loss"] = diff_loss | |
else: | |
loss["ssim_loss_encoder"] = ssim_loss | |
loss["prior_loss_encoder"] = prior_loss | |
loss["diffusion_loss_decoder"] = diff_loss | |
return loss | |
def _train_epoch(self): | |
r"""Training epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
self.model.train() | |
epoch_sum_loss: float = 0.0 | |
epoch_step: int = 0 | |
for batch in tqdm( | |
self.train_dataloader, | |
desc=f"Training Epoch {self.epoch}", | |
unit="batch", | |
colour="GREEN", | |
leave=False, | |
dynamic_ncols=True, | |
smoothing=0.04, | |
disable=not self.accelerator.is_main_process, | |
): | |
# Do training step and BP | |
with self.accelerator.accumulate(self.model): | |
loss = self._train_step(batch) | |
total_loss = 0 | |
for k, v in loss.items(): | |
total_loss += v | |
self.accelerator.backward(total_loss) | |
enc_grad_norm = torch.nn.utils.clip_grad_norm_( | |
self.acoustic_mapper.encoder.parameters(), max_norm=1 | |
) | |
dec_grad_norm = torch.nn.utils.clip_grad_norm_( | |
self.acoustic_mapper.decoder.parameters(), max_norm=1 | |
) | |
self.optimizer.step() | |
self.optimizer.zero_grad() | |
self.batch_count += 1 | |
# Update info for each step | |
# TODO: step means BP counts or batch counts? | |
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: | |
epoch_sum_loss += total_loss | |
log_info = {} | |
for k, v in loss.items(): | |
key = "Step/Train Loss/{}".format(k) | |
log_info[key] = v | |
log_info["Step/Learning Rate"]: self.optimizer.param_groups[0]["lr"] | |
self.accelerator.log( | |
log_info, | |
step=self.step, | |
) | |
self.step += 1 | |
epoch_step += 1 | |
self.accelerator.wait_for_everyone() | |
return ( | |
epoch_sum_loss | |
/ len(self.train_dataloader) | |
* self.cfg.train.gradient_accumulation_step, | |
loss, | |
) | |
def train_loop(self): | |
r"""Training loop. The public entry of training process.""" | |
# Wait everyone to prepare before we move on | |
self.accelerator.wait_for_everyone() | |
# dump config file | |
if self.accelerator.is_main_process: | |
self.__dump_cfg(self.config_save_path) | |
self.model.train() | |
self.optimizer.zero_grad() | |
# Wait to ensure good to go | |
self.accelerator.wait_for_everyone() | |
while self.epoch < self.max_epoch: | |
self.logger.info("\n") | |
self.logger.info("-" * 32) | |
self.logger.info("Epoch {}: ".format(self.epoch)) | |
### TODO: change the return values of _train_epoch() to a loss dict, or (total_loss, loss_dict) | |
### It's inconvenient for the model with multiple losses | |
# Do training & validating epoch | |
train_loss, loss = self._train_epoch() | |
self.logger.info(" |- Train/Loss: {:.6f}".format(train_loss)) | |
for k, v in loss.items(): | |
self.logger.info(" |- Train/Loss/{}: {:.6f}".format(k, v)) | |
valid_loss = self._valid_epoch() | |
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_loss)) | |
self.accelerator.log( | |
{"Epoch/Train Loss": train_loss, "Epoch/Valid Loss": valid_loss}, | |
step=self.epoch, | |
) | |
self.accelerator.wait_for_everyone() | |
# TODO: what is scheduler? | |
self.scheduler.step(valid_loss) # FIXME: use epoch track correct? | |
# Check if hit save_checkpoint_stride and run_eval | |
run_eval = False | |
if self.accelerator.is_main_process: | |
save_checkpoint = False | |
hit_dix = [] | |
for i, num in enumerate(self.save_checkpoint_stride): | |
if self.epoch % num == 0: | |
save_checkpoint = True | |
hit_dix.append(i) | |
run_eval |= self.run_eval[i] | |
self.accelerator.wait_for_everyone() | |
if ( | |
self.accelerator.is_main_process | |
and save_checkpoint | |
and (self.distill or not self.skip_diff) | |
): | |
path = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, train_loss | |
), | |
) | |
self.accelerator.save_state(path) | |
json.dump( | |
self.checkpoints_path, | |
open(os.path.join(path, "ckpts.json"), "w"), | |
ensure_ascii=False, | |
indent=4, | |
) | |
# Remove old checkpoints | |
to_remove = [] | |
for idx in hit_dix: | |
self.checkpoints_path[idx].append(path) | |
while len(self.checkpoints_path[idx]) > self.keep_last[idx]: | |
to_remove.append((idx, self.checkpoints_path[idx].pop(0))) | |
# Search conflicts | |
total = set() | |
for i in self.checkpoints_path: | |
total |= set(i) | |
do_remove = set() | |
for idx, path in to_remove[::-1]: | |
if path in total: | |
self.checkpoints_path[idx].insert(0, path) | |
else: | |
do_remove.add(path) | |
# Remove old checkpoints | |
for path in do_remove: | |
shutil.rmtree(path, ignore_errors=True) | |
self.logger.debug(f"Remove old checkpoint: {path}") | |
self.accelerator.wait_for_everyone() | |
if run_eval: | |
# TODO: run evaluation | |
pass | |
# Update info for each epoch | |
self.epoch += 1 | |
# Finish training and save final checkpoint | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process: | |
self.accelerator.save_state( | |
os.path.join( | |
self.checkpoint_dir, | |
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, valid_loss | |
), | |
) | |
) | |
self.accelerator.end_training() | |
def _valid_epoch(self): | |
r"""Testing epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
self.model.eval() | |
epoch_sum_loss = 0.0 | |
for batch in tqdm( | |
self.valid_dataloader, | |
desc=f"Validating Epoch {self.epoch}", | |
unit="batch", | |
colour="GREEN", | |
leave=False, | |
dynamic_ncols=True, | |
smoothing=0.04, | |
disable=not self.accelerator.is_main_process, | |
): | |
batch_loss = self._valid_step(batch) | |
for k, v in batch_loss.items(): | |
epoch_sum_loss += v | |
self.accelerator.wait_for_everyone() | |
return epoch_sum_loss / len(self.valid_dataloader) | |
def __count_parameters(model): | |
model_param = 0.0 | |
if isinstance(model, dict): | |
for key, value in model.items(): | |
model_param += sum(p.numel() for p in model[key].parameters()) | |
else: | |
model_param = sum(p.numel() for p in model.parameters()) | |
return model_param | |
def __dump_cfg(self, path): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
json5.dump( | |
self.cfg, | |
open(path, "w"), | |
indent=4, | |
sort_keys=True, | |
ensure_ascii=False, | |
quote_keys=True, | |
) | |