komodel / models /svc /comosvc /comosvc_trainer.py
RMSnow's picture
init and interface
df2accb
raw
history blame
11.2 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import os
import json5
from collections import OrderedDict
from tqdm import tqdm
import json
import shutil
from models.svc.base import SVCTrainer
from modules.encoder.condition_encoder import ConditionEncoder
from models.svc.comosvc.comosvc import ComoSVC
class ComoSVCTrainer(SVCTrainer):
r"""The base trainer for all diffusion models. It inherits from SVCTrainer and
implements ``_build_model`` and ``_forward_step`` methods.
"""
def __init__(self, args=None, cfg=None):
SVCTrainer.__init__(self, args, cfg)
self.distill = cfg.model.comosvc.distill
self.skip_diff = True
if self.distill: # and args.resume is None:
self.teacher_model_path = cfg.model.teacher_model_path
self.teacher_state_dict = self._load_teacher_state_dict()
self._load_teacher_model(self.teacher_state_dict)
self.acoustic_mapper.decoder.init_consistency_training()
### Following are methods only for comoSVC models ###
def _load_teacher_state_dict(self):
self.checkpoint_file = self.teacher_model_path
print("Load teacher acoustic model from {}".format(self.checkpoint_file))
raw_state_dict = torch.load(self.checkpoint_file) # , map_location=self.device)
return raw_state_dict
def _load_teacher_model(self, state_dict):
raw_dict = state_dict
clean_dict = OrderedDict()
for k, v in raw_dict.items():
if k.startswith("module."):
clean_dict[k[7:]] = v
else:
clean_dict[k] = v
self.model.load_state_dict(clean_dict)
def _build_model(self):
r"""Build the model for training. This function is called in ``__init__`` function."""
# TODO: sort out the config
self.cfg.model.condition_encoder.f0_min = self.cfg.preprocess.f0_min
self.cfg.model.condition_encoder.f0_max = self.cfg.preprocess.f0_max
self.condition_encoder = ConditionEncoder(self.cfg.model.condition_encoder)
self.acoustic_mapper = ComoSVC(self.cfg)
model = torch.nn.ModuleList([self.condition_encoder, self.acoustic_mapper])
return model
def _forward_step(self, batch):
r"""Forward step for training and inference. This function is called
in ``_train_step`` & ``_test_step`` function.
"""
loss = {}
mask = batch["mask"]
mel_input = batch["mel"]
cond = self.condition_encoder(batch)
if self.distill:
cond = cond.detach()
self.skip_diff = True if self.step < self.cfg.train.fast_steps else False
ssim_loss, prior_loss, diff_loss = self.acoustic_mapper.compute_loss(
mask, cond, mel_input, skip_diff=self.skip_diff
)
if self.distill:
loss["distil_loss"] = diff_loss
else:
loss["ssim_loss_encoder"] = ssim_loss
loss["prior_loss_encoder"] = prior_loss
loss["diffusion_loss_decoder"] = diff_loss
return loss
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.model.train()
epoch_sum_loss: float = 0.0
epoch_step: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Do training step and BP
with self.accelerator.accumulate(self.model):
loss = self._train_step(batch)
total_loss = 0
for k, v in loss.items():
total_loss += v
self.accelerator.backward(total_loss)
enc_grad_norm = torch.nn.utils.clip_grad_norm_(
self.acoustic_mapper.encoder.parameters(), max_norm=1
)
dec_grad_norm = torch.nn.utils.clip_grad_norm_(
self.acoustic_mapper.decoder.parameters(), max_norm=1
)
self.optimizer.step()
self.optimizer.zero_grad()
self.batch_count += 1
# Update info for each step
# TODO: step means BP counts or batch counts?
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
epoch_sum_loss += total_loss
log_info = {}
for k, v in loss.items():
key = "Step/Train Loss/{}".format(k)
log_info[key] = v
log_info["Step/Learning Rate"]: self.optimizer.param_groups[0]["lr"]
self.accelerator.log(
log_info,
step=self.step,
)
self.step += 1
epoch_step += 1
self.accelerator.wait_for_everyone()
return (
epoch_sum_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step,
loss,
)
def train_loop(self):
r"""Training loop. The public entry of training process."""
# Wait everyone to prepare before we move on
self.accelerator.wait_for_everyone()
# dump config file
if self.accelerator.is_main_process:
self.__dump_cfg(self.config_save_path)
self.model.train()
self.optimizer.zero_grad()
# Wait to ensure good to go
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
### TODO: change the return values of _train_epoch() to a loss dict, or (total_loss, loss_dict)
### It's inconvenient for the model with multiple losses
# Do training & validating epoch
train_loss, loss = self._train_epoch()
self.logger.info(" |- Train/Loss: {:.6f}".format(train_loss))
for k, v in loss.items():
self.logger.info(" |- Train/Loss/{}: {:.6f}".format(k, v))
valid_loss = self._valid_epoch()
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_loss))
self.accelerator.log(
{"Epoch/Train Loss": train_loss, "Epoch/Valid Loss": valid_loss},
step=self.epoch,
)
self.accelerator.wait_for_everyone()
# TODO: what is scheduler?
self.scheduler.step(valid_loss) # FIXME: use epoch track correct?
# Check if hit save_checkpoint_stride and run_eval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
hit_dix = []
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
hit_dix.append(i)
run_eval |= self.run_eval[i]
self.accelerator.wait_for_everyone()
if (
self.accelerator.is_main_process
and save_checkpoint
and (self.distill or not self.skip_diff)
):
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, train_loss
),
)
self.accelerator.save_state(path)
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
# Remove old checkpoints
to_remove = []
for idx in hit_dix:
self.checkpoints_path[idx].append(path)
while len(self.checkpoints_path[idx]) > self.keep_last[idx]:
to_remove.append((idx, self.checkpoints_path[idx].pop(0)))
# Search conflicts
total = set()
for i in self.checkpoints_path:
total |= set(i)
do_remove = set()
for idx, path in to_remove[::-1]:
if path in total:
self.checkpoints_path[idx].insert(0, path)
else:
do_remove.add(path)
# Remove old checkpoints
for path in do_remove:
shutil.rmtree(path, ignore_errors=True)
self.logger.debug(f"Remove old checkpoint: {path}")
self.accelerator.wait_for_everyone()
if run_eval:
# TODO: run evaluation
pass
# Update info for each epoch
self.epoch += 1
# Finish training and save final checkpoint
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
self.accelerator.save_state(
os.path.join(
self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_loss
),
)
)
self.accelerator.end_training()
@torch.inference_mode()
def _valid_epoch(self):
r"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.model.eval()
epoch_sum_loss = 0.0
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
batch_loss = self._valid_step(batch)
for k, v in batch_loss.items():
epoch_sum_loss += v
self.accelerator.wait_for_everyone()
return epoch_sum_loss / len(self.valid_dataloader)
@staticmethod
def __count_parameters(model):
model_param = 0.0
if isinstance(model, dict):
for key, value in model.items():
model_param += sum(p.numel() for p in model[key].parameters())
else:
model_param = sum(p.numel() for p in model.parameters())
return model_param
def __dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)