RMSnow's picture
init and interface
df2accb
raw
history blame
13.4 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Adapted from https://github.com/zhenye234/CoMoSpeech"""
import torch
import torch.nn as nn
import copy
import numpy as np
import math
from tqdm.auto import tqdm
from utils.ssim import SSIM
from models.svc.transformer.conformer import Conformer, BaseModule
from models.svc.diffusion.diffusion_wrapper import DiffusionWrapper
from models.svc.comosvc.utils import slice_segments, rand_ids_segments
class Consistency(nn.Module):
def __init__(self, cfg, distill=False):
super().__init__()
self.cfg = cfg
# self.denoise_fn = GradLogPEstimator2d(96)
self.denoise_fn = DiffusionWrapper(self.cfg)
self.cfg = cfg.model.comosvc
self.teacher = not distill
self.P_mean = self.cfg.P_mean
self.P_std = self.cfg.P_std
self.sigma_data = self.cfg.sigma_data
self.sigma_min = self.cfg.sigma_min
self.sigma_max = self.cfg.sigma_max
self.rho = self.cfg.rho
self.N = self.cfg.n_timesteps
self.ssim_loss = SSIM()
# Time step discretization
step_indices = torch.arange(self.N)
# karras boundaries formula
t_steps = (
self.sigma_min ** (1 / self.rho)
+ step_indices
/ (self.N - 1)
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho))
) ** self.rho
self.t_steps = torch.cat(
[torch.zeros_like(t_steps[:1]), self.round_sigma(t_steps)]
)
def init_consistency_training(self):
self.denoise_fn_ema = copy.deepcopy(self.denoise_fn)
self.denoise_fn_pretrained = copy.deepcopy(self.denoise_fn)
def EDMPrecond(self, x, sigma, cond, denoise_fn, mask, spk=None):
"""
karras diffusion reverse process
Args:
x: noisy mel-spectrogram [B x n_mel x L]
sigma: noise level [B x 1 x 1]
cond: output of conformer encoder [B x n_mel x L]
denoise_fn: denoiser neural network e.g. DilatedCNN
mask: mask of padded frames [B x n_mel x L]
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
sigma = sigma.reshape(-1, 1, 1)
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2)
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2).sqrt()
c_in = 1 / (self.sigma_data**2 + sigma**2).sqrt()
c_noise = sigma.log() / 4
x_in = c_in * x
x_in = x_in.transpose(1, 2)
x = x.transpose(1, 2)
cond = cond.transpose(1, 2)
F_x = denoise_fn(x_in, c_noise.squeeze(), cond)
# F_x = denoise_fn((c_in * x), mask, cond, c_noise.flatten())
D_x = c_skip * x + c_out * (F_x)
D_x = D_x.transpose(1, 2)
return D_x
def EDMLoss(self, x_start, cond, mask):
"""
compute loss for EDM model
Args:
x_start: ground truth mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
mask: mask of padded frames [B x n_mel x L]
"""
rnd_normal = torch.randn([x_start.shape[0], 1, 1], device=x_start.device)
sigma = (rnd_normal * self.P_std + self.P_mean).exp()
weight = (sigma**2 + self.sigma_data**2) / (sigma * self.sigma_data) ** 2
# follow Grad-TTS, start from Gaussian noise with mean cond and std I
noise = (torch.randn_like(x_start) + cond) * sigma
D_yn = self.EDMPrecond(x_start + noise, sigma, cond, self.denoise_fn, mask)
loss = weight * ((D_yn - x_start) ** 2)
loss = torch.sum(loss * mask) / torch.sum(mask)
return loss
def round_sigma(self, sigma):
return torch.as_tensor(sigma)
def edm_sampler(
self,
latents,
cond,
nonpadding,
num_steps=50,
sigma_min=0.002,
sigma_max=80,
rho=7,
S_churn=0,
S_min=0,
S_max=float("inf"),
S_noise=1,
# S_churn=40 ,S_min=0.05,S_max=50,S_noise=1.003,# S_churn=0, S_min=0, S_max=float('inf'), S_noise=1,
# S_churn=30 ,S_min=0.01,S_max=30,S_noise=1.007,
# S_churn=30 ,S_min=0.01,S_max=1,S_noise=1.007,
# S_churn=80 ,S_min=0.05,S_max=50,S_noise=1.003,
):
"""
karras diffusion sampler
Args:
latents: noisy mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
nonpadding: mask of padded frames [B x n_mel x L]
num_steps: number of steps for diffusion inference
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
# Time step discretization.
step_indices = torch.arange(num_steps, device=latents.device)
num_steps = num_steps + 1
t_steps = (
sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
) ** rho
t_steps = torch.cat([self.round_sigma(t_steps), torch.zeros_like(t_steps[:1])])
# Main sampling loop.
x_next = latents * t_steps[0]
# wrap in tqdm for progress bar
bar = tqdm(enumerate(zip(t_steps[:-1], t_steps[1:])))
for i, (t_cur, t_next) in bar:
x_cur = x_next
# Increase noise temporarily.
gamma = (
min(S_churn / num_steps, np.sqrt(2) - 1)
if S_min <= t_cur <= S_max
else 0
)
t_hat = self.round_sigma(t_cur + gamma * t_cur)
t = torch.zeros((x_cur.shape[0], 1, 1), device=x_cur.device)
t[:, 0, 0] = t_hat
t_hat = t
x_hat = x_cur + (
t_hat**2 - t_cur**2
).sqrt() * S_noise * torch.randn_like(x_cur)
# Euler step.
denoised = self.EDMPrecond(x_hat, t_hat, cond, self.denoise_fn, nonpadding)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
return x_next
def CTLoss_D(self, y, cond, mask):
"""
compute loss for consistency distillation
Args:
y: ground truth mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
mask: mask of padded frames [B x n_mel x L]
"""
with torch.no_grad():
mu = 0.95
for p, ema_p in zip(
self.denoise_fn.parameters(), self.denoise_fn_ema.parameters()
):
ema_p.mul_(mu).add_(p, alpha=1 - mu)
n = torch.randint(1, self.N, (y.shape[0],))
z = torch.randn_like(y) + cond
tn_1 = self.t_steps[n + 1].reshape(-1, 1, 1).to(y.device)
f_theta = self.EDMPrecond(y + tn_1 * z, tn_1, cond, self.denoise_fn, mask)
with torch.no_grad():
tn = self.t_steps[n].reshape(-1, 1, 1).to(y.device)
# euler step
x_hat = y + tn_1 * z
denoised = self.EDMPrecond(
x_hat, tn_1, cond, self.denoise_fn_pretrained, mask
)
d_cur = (x_hat - denoised) / tn_1
y_tn = x_hat + (tn - tn_1) * d_cur
f_theta_ema = self.EDMPrecond(y_tn, tn, cond, self.denoise_fn_ema, mask)
# loss = (f_theta - f_theta_ema.detach()) ** 2
# loss = torch.sum(loss * mask) / torch.sum(mask)
loss = self.ssim_loss(f_theta, f_theta_ema.detach())
loss = torch.sum(loss * mask) / torch.sum(mask)
return loss
def get_t_steps(self, N):
N = N + 1
step_indices = torch.arange(N) # , device=latents.device)
t_steps = (
self.sigma_min ** (1 / self.rho)
+ step_indices
/ (N - 1)
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho))
) ** self.rho
return t_steps.flip(0)
def CT_sampler(self, latents, cond, nonpadding, t_steps=1):
"""
consistency distillation sampler
Args:
latents: noisy mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
nonpadding: mask of padded frames [B x n_mel x L]
t_steps: number of steps for diffusion inference
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
# one-step
if t_steps == 1:
t_steps = [80]
# multi-step
else:
t_steps = self.get_t_steps(t_steps)
t_steps = torch.as_tensor(t_steps).to(latents.device)
latents = latents * t_steps[0]
_t = torch.zeros((latents.shape[0], 1, 1), device=latents.device)
_t[:, 0, 0] = t_steps
x = self.EDMPrecond(latents, _t, cond, self.denoise_fn_ema, nonpadding)
for t in t_steps[1:-1]:
z = torch.randn_like(x) + cond
x_tn = x + (t**2 - self.sigma_min**2).sqrt() * z
_t = torch.zeros((x.shape[0], 1, 1), device=x.device)
_t[:, 0, 0] = t
t = _t
print(t)
x = self.EDMPrecond(x_tn, t, cond, self.denoise_fn_ema, nonpadding)
return x
def forward(self, x, nonpadding, cond, t_steps=1, infer=False):
"""
calculate loss or sample mel-spectrogram
Args:
x:
training: ground truth mel-spectrogram [B x n_mel x L]
inference: output of encoder [B x n_mel x L]
"""
if self.teacher: # teacher model -- karras diffusion
if not infer:
loss = self.EDMLoss(x, cond, nonpadding)
return loss
else:
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2])
x = torch.randn(shape, device=x.device) + cond
x = self.edm_sampler(x, cond, nonpadding, t_steps)
return x
else: # Consistency distillation
if not infer:
loss = self.CTLoss_D(x, cond, nonpadding)
return loss
else:
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2])
x = torch.randn(shape, device=x.device) + cond
x = self.CT_sampler(x, cond, nonpadding, t_steps=1)
return x
class ComoSVC(BaseModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.cfg.model.comosvc.n_mel = self.cfg.preprocess.n_mel
self.distill = self.cfg.model.comosvc.distill
self.encoder = Conformer(self.cfg.model.comosvc)
self.decoder = Consistency(self.cfg, distill=self.distill)
self.ssim_loss = SSIM()
@torch.no_grad()
def forward(self, x_mask, x, n_timesteps, temperature=1.0):
"""
Generates mel-spectrogram from pitch, content vector, energy. Returns:
1. encoder outputs (from conformer)
2. decoder outputs (from diffusion-based decoder)
Args:
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel]
x : output of encoder framework. [B x L x d_condition]
n_timesteps : number of steps to use for reverse diffusion in decoder.
temperature : controls variance of terminal distribution.
"""
# Get encoder_outputs `mu_x`
mu_x = self.encoder(x, x_mask)
encoder_outputs = mu_x
mu_x = mu_x.transpose(1, 2)
x_mask = x_mask.transpose(1, 2)
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder(
mu_x, x_mask, mu_x, t_steps=n_timesteps, infer=True
)
decoder_outputs = decoder_outputs.transpose(1, 2)
return encoder_outputs, decoder_outputs
def compute_loss(self, x_mask, x, mel, out_size=None, skip_diff=False):
"""
Computes 2 losses:
1. prior loss: loss between mel-spectrogram and encoder outputs.
2. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel]
x : output of encoder framework. [B x L x d_condition]
mel : ground truth mel-spectrogram. [B x L x n_mel]
"""
mu_x = self.encoder(x, x_mask)
# prior loss
prior_loss = torch.sum(
0.5 * ((mel - mu_x) ** 2 + math.log(2 * math.pi)) * x_mask
)
prior_loss = prior_loss / (torch.sum(x_mask) * self.cfg.model.comosvc.n_mel)
# ssim loss
ssim_loss = self.ssim_loss(mu_x, mel)
ssim_loss = torch.sum(ssim_loss * x_mask) / torch.sum(x_mask)
x_mask = x_mask.transpose(1, 2)
mu_x = mu_x.transpose(1, 2)
mel = mel.transpose(1, 2)
if not self.distill and skip_diff:
diff_loss = prior_loss.clone()
diff_loss.fill_(0)
# Cut a small segment of mel-spectrogram in order to increase batch size
else:
if self.distill:
mu_y = mu_x.detach()
else:
mu_y = mu_x
mask_y = x_mask
diff_loss = self.decoder(mel, mask_y, mu_y, infer=False)
return ssim_loss, prior_loss, diff_loss