File size: 9,197 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Iterable
import torch
import numpy as np
import torch.utils.data
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from torch.utils.data import ConcatDataset, Dataset


class VocoderDataset(torch.utils.data.Dataset):
    def __init__(self, cfg, dataset, is_valid=False):
        """
        Args:
            cfg: config
            dataset: dataset name
            is_valid: whether to use train or valid dataset
        """
        assert isinstance(dataset, str)

        processed_data_dir = os.path.join(cfg.preprocess.processed_dir, dataset)

        meta_file = cfg.preprocess.valid_file if is_valid else cfg.preprocess.train_file
        self.metafile_path = os.path.join(processed_data_dir, meta_file)
        self.metadata = self.get_metadata()

        self.data_root = processed_data_dir
        self.cfg = cfg

        if cfg.preprocess.use_audio:
            self.utt2audio_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2audio_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.audio_dir,
                    uid + ".npy",
                )
        elif cfg.preprocess.use_label:
            self.utt2label_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2label_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.label_dir,
                    uid + ".npy",
                )
        elif cfg.preprocess.use_one_hot:
            self.utt2one_hot_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2one_hot_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.one_hot_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_mel:
            self.utt2mel_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2mel_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.mel_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_frame_pitch:
            self.utt2frame_pitch_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2frame_pitch_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.pitch_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_uv:
            self.utt2uv_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)
                self.utt2uv_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.uv_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_amplitude_phase:
            self.utt2logamp_path = {}
            self.utt2pha_path = {}
            self.utt2rea_path = {}
            self.utt2imag_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)
                self.utt2logamp_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.log_amplitude_dir,
                    uid + ".npy",
                )
                self.utt2pha_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.phase_dir,
                    uid + ".npy",
                )
                self.utt2rea_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.real_dir,
                    uid + ".npy",
                )
                self.utt2imag_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.imaginary_dir,
                    uid + ".npy",
                )

    def __getitem__(self, index):
        utt_info = self.metadata[index]

        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        single_feature = dict()

        if self.cfg.preprocess.use_mel:
            mel = np.load(self.utt2mel_path[utt])
            assert mel.shape[0] == self.cfg.preprocess.n_mel  # [n_mels, T]

            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = mel.shape[1]

            single_feature["mel"] = mel

        if self.cfg.preprocess.use_frame_pitch:
            frame_pitch = np.load(self.utt2frame_pitch_path[utt])

            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = len(frame_pitch)

            aligned_frame_pitch = align_length(
                frame_pitch, single_feature["target_len"]
            )

            single_feature["frame_pitch"] = aligned_frame_pitch

        if self.cfg.preprocess.use_audio:
            audio = np.load(self.utt2audio_path[utt])

            single_feature["audio"] = audio

        return single_feature

    def get_metadata(self):
        with open(self.metafile_path, "r", encoding="utf-8") as f:
            metadata = json.load(f)

        return metadata

    def get_dataset_name(self):
        return self.metadata[0]["Dataset"]

    def __len__(self):
        return len(self.metadata)


class VocoderConcatDataset(ConcatDataset):
    def __init__(self, datasets: Iterable[Dataset], full_audio_inference=False):
        """Concatenate a series of datasets with their random inference audio merged."""
        super().__init__(datasets)

        self.cfg = self.datasets[0].cfg

        self.metadata = []

        # Merge metadata
        for dataset in self.datasets:
            self.metadata += dataset.metadata

        # Merge random inference features
        if full_audio_inference:
            self.eval_audios = []
            self.eval_dataset_names = []
            if self.cfg.preprocess.use_mel:
                self.eval_mels = []
            if self.cfg.preprocess.use_frame_pitch:
                self.eval_pitchs = []
            for dataset in self.datasets:
                self.eval_audios.append(dataset.eval_audio)
                self.eval_dataset_names.append(dataset.get_dataset_name())
                if self.cfg.preprocess.use_mel:
                    self.eval_mels.append(dataset.eval_mel)
                if self.cfg.preprocess.use_frame_pitch:
                    self.eval_pitchs.append(dataset.eval_pitch)


class VocoderCollator(object):
    """Zero-pads model inputs and targets based on number of frames per step"""

    def __init__(self, cfg):
        self.cfg = cfg

    def __call__(self, batch):
        packed_batch_features = dict()

        # mel: [b, n_mels, frame]
        # frame_pitch: [b, frame]
        # audios: [b, frame * hop_size]

        for key in batch[0].keys():
            if key == "target_len":
                packed_batch_features["target_len"] = torch.LongTensor(
                    [b["target_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "mel":
                values = [torch.from_numpy(b[key]).T for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )
            else:
                values = [torch.from_numpy(b[key]) for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )

        return packed_batch_features