File size: 2,388 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from torch import nn
from torch.nn import functional as F


class Conv1d(nn.Conv1d):
    """Extended nn.Conv1d for incremental dilated convolutions"""

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.clear_buffer()
        self._linearized_weight = None
        self.register_backward_hook(self._clear_linearized_weight)

    def incremental_forward(self, input):
        # input (B, T, C)
        # run forward pre hooks
        for hook in self._forward_pre_hooks.values():
            hook(self, input)

        # reshape weight
        weight = self._get_linearized_weight()
        kw = self.kernel_size[0]
        dilation = self.dilation[0]

        bsz = input.size(0)
        if kw > 1:
            input = input.data
            if self.input_buffer is None:
                self.input_buffer = input.new(
                    bsz, kw + (kw - 1) * (dilation - 1), input.size(2)
                )
                self.input_buffer.zero_()
            else:
                # shift buffer
                self.input_buffer[:, :-1, :] = self.input_buffer[:, 1:, :].clone()
            # append next input
            self.input_buffer[:, -1, :] = input[:, -1, :]
            input = self.input_buffer
            if dilation > 1:
                input = input[:, 0::dilation, :].contiguous()
        output = F.linear(input.view(bsz, -1), weight, self.bias)
        return output.view(bsz, 1, -1)

    def clear_buffer(self):
        self.input_buffer = None

    def _get_linearized_weight(self):
        if self._linearized_weight is None:
            kw = self.kernel_size[0]
            # nn.Conv1d
            if self.weight.size() == (self.out_channels, self.in_channels, kw):
                weight = self.weight.transpose(1, 2).contiguous()
            else:
                # fairseq.modules.conv_tbc.ConvTBC
                weight = self.weight.transpose(2, 1).transpose(1, 0).contiguous()
            assert weight.size() == (self.out_channels, kw, self.in_channels)
            self._linearized_weight = weight.view(self.out_channels, -1)
        return self._linearized_weight

    def _clear_linearized_weight(self, *args):
        self._linearized_weight = None