File size: 14,323 Bytes
160f728
 
 
1f9788f
160f728
6417426
160f728
9ad3bc3
 
 
6417426
 
160f728
 
9ad3bc3
160f728
3809dc8
9ad3bc3
6417426
3809dc8
 
160f728
 
 
6417426
 
 
 
 
 
 
 
 
 
 
 
 
 
3809dc8
 
 
 
 
 
 
 
 
 
 
 
160f728
3809dc8
 
 
 
 
 
160f728
3809dc8
 
160f728
 
 
 
 
 
 
 
 
 
 
 
 
 
3809dc8
160f728
 
9ad3bc3
160f728
 
 
 
9ad3bc3
160f728
 
 
 
3809dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6417426
3809dc8
9ad3bc3
 
 
 
3809dc8
9ad3bc3
 
6417426
 
160f728
3809dc8
 
160f728
6417426
160f728
3809dc8
 
160f728
9ad3bc3
 
 
160f728
 
 
 
 
 
 
3809dc8
6417426
160f728
6417426
160f728
 
6417426
49679bb
160f728
 
 
 
 
 
 
 
 
 
6417426
160f728
 
 
 
 
3809dc8
160f728
 
 
 
 
9ad3bc3
49679bb
 
9ad3bc3
 
 
160f728
 
9ad3bc3
1f9788f
3809dc8
160f728
 
 
 
 
 
 
3809dc8
160f728
 
6417426
9ad3bc3
3809dc8
160f728
 
 
6417426
 
 
160f728
 
1f9788f
3809dc8
9ad3bc3
 
 
 
6417426
1f9788f
9ad3bc3
1f9788f
6417426
 
160f728
3809dc8
9ad3bc3
 
 
 
 
 
 
 
 
 
 
 
3809dc8
9ad3bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160f728
9ad3bc3
 
 
160f728
9ad3bc3
160f728
9ad3bc3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import gradio as gr
from datetime import datetime
import pandas as pd
from transformers import pipeline, AutoTokenizer
import os
from typing import Type
import gradio as gr

from llama_cpp import Llama
from huggingface_hub import hf_hub_download

PandasDataFrame = Type[pd.DataFrame]

import chatfuncs.chatfuncs as chatf
import chatfuncs.summarise_funcs as sumf

from chatfuncs.helper_functions import dummy_function, put_columns_in_df, output_folder, ensure_output_folder_exists
from chatfuncs.summarise_funcs import summarise_text

ensure_output_folder_exists(output_folder)

# Disable cuda devices if necessary
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1' 

from torch import cuda, backends

# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
    torch_device = "cuda"
    os.system("nvidia-smi")

else: 
    torch_device =  "cpu"

print("Device used is: ", torch_device)

def create_hf_model(model_name, local_model_dir="model/t5_long"):

    # Construct the expected local model path
    local_model_path = os.path.join(local_model_dir, model_name)

    # Check if the model directory exists
    if os.path.exists(local_model_path):
        print(f"Model '{model_name}' found locally at: {local_model_path}")
        
        # Load tokenizer and pipeline from local path
        tokenizer = AutoTokenizer.from_pretrained(local_model_path, model_max_length=chatf.context_length) 
        summariser = pipeline("summarization", model=local_model_path, tokenizer=tokenizer) 

    else:
        print(f"Downloading model '{model_name}' from Hugging Face Hub...")
        
        # Download tokenizer and pipeline from Hugging Face Hub
        tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length=chatf.context_length)
        summariser = pipeline("summarization", model=model_name, tokenizer=tokenizer)

        # Save the model locally (optional, but recommended for future use)
        #summariser.save_pretrained(local_model_path) 

    return summariser, tokenizer, model_name

def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
    print("Loading model ", model_type)

    # Default values inside the function
    if gpu_config is None:
        gpu_config = chatf.gpu_config
    if cpu_config is None:
        cpu_config = chatf.cpu_config
    if torch_device is None:
        torch_device = chatf.torch_device

    if model_type == "Phi 3 128k (24k tokens max)":
        if torch_device == "cuda":
            gpu_config.update_gpu(gpu_layers)
            print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.")
        else:
            gpu_config.update_gpu(gpu_layers)
            cpu_config.update_gpu(gpu_layers)

            print("Loading with", cpu_config.n_gpu_layers, "model layers sent to GPU.")

        print(vars(gpu_config))
        print(vars(cpu_config))

        def get_model_path():
            repo_id = os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF")
            filename = os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf")
            model_dir = "model/phi"  # Assuming this is your intended directory

            # Construct the expected local path
            local_path = os.path.join(model_dir, filename)

            if os.path.exists(local_path):
                print(f"Model already exists at: {local_path}")
                return local_path
            else:
                print(f"Checking default Hugging Face folder. Downloading model from Hugging Face Hub if not found")
                return hf_hub_download(repo_id=repo_id, filename=filename)
                                       
        model_path = get_model_path()
        

        try:
            summariser = Llama(model_path=model_path, **vars(gpu_config))
        
        except Exception as e:
            print("GPU load failed")
            print(e)
            summariser = Llama(model_path=model_path, **vars(cpu_config))

        tokenizer = []

    if model_type == "Flan T5 Large Stacked Samsum 1k":
        # Huggingface chat model
        hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'
        summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_stacked")

    if model_type == "Long T5 Global Base 16k Book Summary":
        # Huggingface chat model
        hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary'
        summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_long")

    sumf.model = summariser
    sumf.tokenizer = tokenizer
    sumf.model_type = model_type

    load_confirmation = "Finished loading model: " + model_type

    print(load_confirmation)
    return model_type, load_confirmation, model_type

# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
model_type = "Phi 3 128k (24k tokens max)"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)

model_type = "Flan T5 Large Stacked Samsum 1k"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)

model_type = "Long T5 Global Base 16k Book Summary"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)

today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")


# ## Gradio app - summarise
block = gr.Blocks(theme = gr.themes.Base())

with block:  

    data_state = gr.State(pd.DataFrame())
    model_type_state = gr.State(model_type)
      
    gr.Markdown(
    """
    # Text summariser
    Enter open text below to get a summary. You can copy and paste text directly, or upload a file and specify the column that you want to summarise. The default small model will be able to summarise up to about 12,000 words, but the quality may not be great. The larger model around 800 words of better quality. Summarisation with Phi 3 128k works on up to around 20,000 words (suitable for a 12Gb graphics card without out of memory issues), and may give a higher quality summary, but will be slow, and it may not respect your desired maximum word count.
    """)    
    
    with gr.Tab("Summariser"):
        current_model = gr.Textbox(label="Current model", value=model_type, scale = 3)

        with gr.Accordion("Summarise open text from a file", open = True):
            in_text_df = gr.File(label="Input text from file", file_count='multiple')
            in_colname = gr.Dropdown(label="Write the column name for the open text to summarise")

        with gr.Accordion("Paste open text", open = False):
            in_text = gr.Textbox(label="Copy and paste your open text here", lines = 5)
    
        with gr.Row():
            summarise_btn = gr.Button("Summarise", variant="primary")
            stop = gr.Button(value="Interrupt processing", variant="secondary", scale=0)
            length_slider = gr.Slider(minimum = 30, maximum = 1000, value = 500, step = 10, label = "Maximum length of summary (in words)")
        
        with gr.Row():
            output_single_text = gr.Textbox(label="Output example (first example in dataset)")
            output_file = gr.File(label="Output file")

    with gr.Tab("Advanced features"):
        with gr.Row():
            model_choice = gr.Radio(label="Choose a summariser model", value="Long T5 Global Base 16k Book Summary", choices = ["Long T5 Global Base 16k Book Summary", "Flan T5 Large Stacked Samsum 1k", "Phi 3 128k (24k tokens max)"])
            change_model_button = gr.Button(value="Load model", scale=0)
        with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
            gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
        with gr.Accordion("LLM parameters"):
            temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.", interactive=True)

        load_text = gr.Text(label="Load status")

     # Update dropdowns upon initial file load
    in_text_df.upload(put_columns_in_df, inputs=[in_text_df, in_colname], outputs=[in_colname, data_state])

    change_model_button.click(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model])

    summarise_click = summarise_btn.click(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
                       outputs=[output_single_text, output_file], api_name="summarise")
    # summarise_enter = summarise_btn.submit(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
    #                    outputs=[output_single_text, output_file])
    
    #summarise_click = summarise_btn.click(chatf.llama_cpp_streaming, [chatbot, instruction_prompt_out, model_type_state, temp_slide], chatbot)
    
    # Stop processing if it's taking too long
    stop.click(fn=None, inputs=None, outputs=None, cancels=[summarise_click])

    # Dummy function to allow dropdown modification to work correctly (strange thing needed for Gradio 3.50, will be deprecated upon upgrading Gradio version)
    in_colname.change(dummy_function, in_colname, None)

block.queue().launch(show_error=True)

# def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
#     print("Loading model ", model_type)

#     # Default values inside the function
#     if gpu_config is None:
#         gpu_config = chatf.gpu_config
#     if cpu_config is None:
#         cpu_config = chatf.cpu_config
#     if torch_device is None:
#         torch_device = chatf.torch_device

#     if model_type == "Phi 3 128k (24k tokens max)":
#         hf_checkpoint = 'NousResearch/Nous-Capybara-7B-V1.9-GGUF'

#         if torch_device == "cuda":
#             gpu_config.update_gpu(gpu_layers)
#         else:
#             gpu_config.update_gpu(gpu_layers)
#             cpu_config.update_gpu(gpu_layers)

#         print("Loading with", cpu_config.gpu_layers, "model layers sent to GPU.")

#         print(vars(gpu_config))
#         print(vars(cpu_config))

#         try:
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
#             model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())


#             tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
#             summariser = pipeline("text-generation", model=model, tokenizer=tokenizer)

#         except:
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(cpu_config)) #**asdict(CtransRunConfig_gpu())
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(cpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
#             #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
#             model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
            
#             #tokenizer = ctransformers.AutoTokenizer.from_pretrained(model)

#             tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
#             summariser = pipeline("text-generation", model=model, tokenizer=tokenizer) # model

#         #model = []
#         #tokenizer = []
#         #summariser = []

#     if model_type == "Flan T5 Large Stacked Samsum 1k":
#         # Huggingface chat model
#         hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'#'declare-lab/flan-alpaca-base' # # #

#         summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)

#     if model_type == "Long T5 Global Base 16k Book Summary":
#         # Huggingface chat model
#         hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary' #'philschmid/flan-t5-small-stacked-samsum'#'declare-lab/flan-alpaca-base' # # #
#         summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)

#     chatf.model = summariser
#     chatf.tokenizer = tokenizer
#     chatf.model_type = model_type

#     load_confirmation = "Finished loading model: " + model_type

#     print(load_confirmation)
#     return model_type, load_confirmation, model_type