# Reference: # https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/transformer_decoder/position_encoding.py # https://github.com/tatp22/multidim-positional-encoding/blob/master/positional_encodings/torch_encodings.py import math import numpy as np import torch from torch import nn def get_emb(sin_inp: torch.Tensor) -> torch.Tensor: """ Gets a base embedding for one dimension with sin and cos intertwined """ emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1) return torch.flatten(emb, -2, -1) class PositionalEncoding(nn.Module): def __init__(self, dim: int, scale: float = math.pi * 2, temperature: float = 10000, normalize: bool = True, channel_last: bool = True, transpose_output: bool = False): super().__init__() dim = int(np.ceil(dim / 4) * 2) self.dim = dim inv_freq = 1.0 / (temperature**(torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) self.normalize = normalize self.scale = scale self.eps = 1e-6 self.channel_last = channel_last self.transpose_output = transpose_output self.cached_penc = None # the cache is irrespective of the number of objects def forward(self, tensor: torch.Tensor) -> torch.Tensor: """ :param tensor: A 4/5d tensor of size channel_last=True: (batch_size, h, w, c) or (batch_size, k, h, w, c) channel_last=False: (batch_size, c, h, w) or (batch_size, k, c, h, w) :return: positional encoding tensor that has the same shape as the input if the input is 4d if the input is 5d, the output is broadcastable along the k-dimension """ if len(tensor.shape) != 4 and len(tensor.shape) != 5: raise RuntimeError(f'The input tensor has to be 4/5d, got {tensor.shape}!') if len(tensor.shape) == 5: # take a sample from the k dimension num_objects = tensor.shape[1] tensor = tensor[:, 0] else: num_objects = None if self.channel_last: batch_size, h, w, c = tensor.shape else: batch_size, c, h, w = tensor.shape if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: if num_objects is None: return self.cached_penc else: return self.cached_penc.unsqueeze(1) self.cached_penc = None pos_y = torch.arange(h, device=tensor.device, dtype=self.inv_freq.dtype) pos_x = torch.arange(w, device=tensor.device, dtype=self.inv_freq.dtype) if self.normalize: pos_y = pos_y / (pos_y[-1] + self.eps) * self.scale pos_x = pos_x / (pos_x[-1] + self.eps) * self.scale sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq) sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq) emb_y = get_emb(sin_inp_y).unsqueeze(1) emb_x = get_emb(sin_inp_x) emb = torch.zeros((h, w, self.dim * 2), device=tensor.device, dtype=tensor.dtype) emb[:, :, :self.dim] = emb_x emb[:, :, self.dim:] = emb_y if not self.channel_last and self.transpose_output: # cancelled out pass elif (not self.channel_last) or (self.transpose_output): emb = emb.permute(2, 0, 1) self.cached_penc = emb.unsqueeze(0).repeat(batch_size, 1, 1, 1) if num_objects is None: return self.cached_penc else: return self.cached_penc.unsqueeze(1) if __name__ == '__main__': pe = PositionalEncoding(8).cuda() input = torch.ones((1, 8, 8, 8)).cuda() output = pe(input) # print(output) print(output[0, :, 0, 0]) print(output[0, :, 0, 5]) print(output[0, 0, :, 0]) print(output[0, 0, 0, :])