import torch import torch.nn as nn import torch.nn.functional as F from functools import reduce class BaseNetwork(nn.Module): def __init__(self): super(BaseNetwork, self).__init__() def print_network(self): if isinstance(self, list): self = self[0] num_params = 0 for param in self.parameters(): num_params += param.numel() print( 'Network [%s] was created. Total number of parameters: %.1f million. ' 'To see the architecture, do print(network).' % (type(self).__name__, num_params / 1000000)) def init_weights(self, init_type='normal', gain=0.02): ''' initialize network's weights init_type: normal | xavier | kaiming | orthogonal https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39 ''' def init_func(m): classname = m.__class__.__name__ if classname.find('InstanceNorm2d') != -1: if hasattr(m, 'weight') and m.weight is not None: nn.init.constant_(m.weight.data, 1.0) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias.data, 0.0) elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': nn.init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'xavier_uniform': nn.init.xavier_uniform_(m.weight.data, gain=1.0) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight.data, gain=gain) elif init_type == 'none': # uses pytorch's default init method m.reset_parameters() else: raise NotImplementedError( 'initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias.data, 0.0) self.apply(init_func) # propagate to children for m in self.children(): if hasattr(m, 'init_weights'): m.init_weights(init_type, gain) class Vec2Feat(nn.Module): def __init__(self, channel, hidden, kernel_size, stride, padding): super(Vec2Feat, self).__init__() self.relu = nn.LeakyReLU(0.2, inplace=True) c_out = reduce((lambda x, y: x * y), kernel_size) * channel self.embedding = nn.Linear(hidden, c_out) self.kernel_size = kernel_size self.stride = stride self.padding = padding self.bias_conv = nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) def forward(self, x, t, output_size): b_, _, _, _, c_ = x.shape x = x.view(b_, -1, c_) feat = self.embedding(x) b, _, c = feat.size() feat = feat.view(b * t, -1, c).permute(0, 2, 1) feat = F.fold(feat, output_size=output_size, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding) feat = self.bias_conv(feat) return feat class FusionFeedForward(nn.Module): def __init__(self, dim, hidden_dim=1960, t2t_params=None): super(FusionFeedForward, self).__init__() # We set hidden_dim as a default to 1960 self.fc1 = nn.Sequential(nn.Linear(dim, hidden_dim)) self.fc2 = nn.Sequential(nn.GELU(), nn.Linear(hidden_dim, dim)) assert t2t_params is not None self.t2t_params = t2t_params self.kernel_shape = reduce((lambda x, y: x * y), t2t_params['kernel_size']) # 49 def forward(self, x, output_size): n_vecs = 1 for i, d in enumerate(self.t2t_params['kernel_size']): n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] - (d - 1) - 1) / self.t2t_params['stride'][i] + 1) x = self.fc1(x) b, n, c = x.size() normalizer = x.new_ones(b, n, self.kernel_shape).view(-1, n_vecs, self.kernel_shape).permute(0, 2, 1) normalizer = F.fold(normalizer, output_size=output_size, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']) x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1), output_size=output_size, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']) x = F.unfold(x / normalizer, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']).permute( 0, 2, 1).contiguous().view(b, n, c) x = self.fc2(x) return x