import math from functools import reduce import torch import torch.nn as nn import torch.nn.functional as F class SoftSplit(nn.Module): def __init__(self, channel, hidden, kernel_size, stride, padding): super(SoftSplit, self).__init__() self.kernel_size = kernel_size self.stride = stride self.padding = padding self.t2t = nn.Unfold(kernel_size=kernel_size, stride=stride, padding=padding) c_in = reduce((lambda x, y: x * y), kernel_size) * channel self.embedding = nn.Linear(c_in, hidden) def forward(self, x, b, output_size): f_h = int((output_size[0] + 2 * self.padding[0] - (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) f_w = int((output_size[1] + 2 * self.padding[1] - (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) feat = self.t2t(x) feat = feat.permute(0, 2, 1) # feat shape [b*t, num_vec, ks*ks*c] feat = self.embedding(feat) # feat shape after embedding [b, t*num_vec, hidden] feat = feat.view(b, -1, f_h, f_w, feat.size(2)) return feat class SoftComp(nn.Module): def __init__(self, channel, hidden, kernel_size, stride, padding): super(SoftComp, self).__init__() self.relu = nn.LeakyReLU(0.2, inplace=True) c_out = reduce((lambda x, y: x * y), kernel_size) * channel self.embedding = nn.Linear(hidden, c_out) self.kernel_size = kernel_size self.stride = stride self.padding = padding self.bias_conv = nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) def forward(self, x, t, output_size): b_, _, _, _, c_ = x.shape x = x.view(b_, -1, c_) feat = self.embedding(x) b, _, c = feat.size() feat = feat.view(b * t, -1, c).permute(0, 2, 1) feat = F.fold(feat, output_size=output_size, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding) feat = self.bias_conv(feat) return feat class FusionFeedForward(nn.Module): def __init__(self, dim, hidden_dim=1960, t2t_params=None): super(FusionFeedForward, self).__init__() # We set hidden_dim as a default to 1960 self.fc1 = nn.Sequential(nn.Linear(dim, hidden_dim)) self.fc2 = nn.Sequential(nn.GELU(), nn.Linear(hidden_dim, dim)) assert t2t_params is not None self.t2t_params = t2t_params self.kernel_shape = reduce((lambda x, y: x * y), t2t_params['kernel_size']) # 49 def forward(self, x, output_size): n_vecs = 1 for i, d in enumerate(self.t2t_params['kernel_size']): n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] - (d - 1) - 1) / self.t2t_params['stride'][i] + 1) x = self.fc1(x) b, n, c = x.size() normalizer = x.new_ones(b, n, self.kernel_shape).view(-1, n_vecs, self.kernel_shape).permute(0, 2, 1) normalizer = F.fold(normalizer, output_size=output_size, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']) x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1), output_size=output_size, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']) x = F.unfold(x / normalizer, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']).permute( 0, 2, 1).contiguous().view(b, n, c) x = self.fc2(x) return x def window_partition(x, window_size, n_head): """ Args: x: shape is (B, T, H, W, C) window_size (tuple[int]): window size Returns: windows: (B, num_windows_h, num_windows_w, n_head, T, window_size, window_size, C//n_head) """ B, T, H, W, C = x.shape x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1], window_size[1], n_head, C//n_head) windows = x.permute(0, 2, 4, 6, 1, 3, 5, 7).contiguous() return windows class SparseWindowAttention(nn.Module): def __init__(self, dim, n_head, window_size, pool_size=(4,4), qkv_bias=True, attn_drop=0., proj_drop=0., pooling_token=True): super().__init__() assert dim % n_head == 0 # key, query, value projections for all heads self.key = nn.Linear(dim, dim, qkv_bias) self.query = nn.Linear(dim, dim, qkv_bias) self.value = nn.Linear(dim, dim, qkv_bias) # regularization self.attn_drop = nn.Dropout(attn_drop) self.proj_drop = nn.Dropout(proj_drop) # output projection self.proj = nn.Linear(dim, dim) self.n_head = n_head self.window_size = window_size self.pooling_token = pooling_token if self.pooling_token: ks, stride = pool_size, pool_size self.pool_layer = nn.Conv2d(dim, dim, kernel_size=ks, stride=stride, padding=(0, 0), groups=dim) self.pool_layer.weight.data.fill_(1. / (pool_size[0] * pool_size[1])) self.pool_layer.bias.data.fill_(0) # self.expand_size = tuple(i // 2 for i in window_size) self.expand_size = tuple((i + 1) // 2 for i in window_size) if any(i > 0 for i in self.expand_size): # get mask for rolled k and rolled v mask_tl = torch.ones(self.window_size[0], self.window_size[1]) mask_tl[:-self.expand_size[0], :-self.expand_size[1]] = 0 mask_tr = torch.ones(self.window_size[0], self.window_size[1]) mask_tr[:-self.expand_size[0], self.expand_size[1]:] = 0 mask_bl = torch.ones(self.window_size[0], self.window_size[1]) mask_bl[self.expand_size[0]:, :-self.expand_size[1]] = 0 mask_br = torch.ones(self.window_size[0], self.window_size[1]) mask_br[self.expand_size[0]:, self.expand_size[1]:] = 0 masrool_k = torch.stack((mask_tl, mask_tr, mask_bl, mask_br), 0).flatten(0) self.register_buffer("valid_ind_rolled", masrool_k.nonzero(as_tuple=False).view(-1)) self.max_pool = nn.MaxPool2d(window_size, window_size, (0, 0)) def forward(self, x, mask=None, T_ind=None, attn_mask=None): b, t, h, w, c = x.shape # 20 36 w_h, w_w = self.window_size[0], self.window_size[1] c_head = c // self.n_head n_wh = math.ceil(h / self.window_size[0]) n_ww = math.ceil(w / self.window_size[1]) new_h = n_wh * self.window_size[0] # 20 new_w = n_ww * self.window_size[1] # 36 pad_r = new_w - w pad_b = new_h - h # reverse order if pad_r > 0 or pad_b > 0: x = F.pad(x,(0, 0, 0, pad_r, 0, pad_b, 0, 0), mode='constant', value=0) mask = F.pad(mask,(0, 0, 0, pad_r, 0, pad_b, 0, 0), mode='constant', value=0) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q = self.query(x) k = self.key(x) v = self.value(x) win_q = window_partition(q.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head) win_k = window_partition(k.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head) win_v = window_partition(v.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head) # roll_k and roll_v if any(i > 0 for i in self.expand_size): (k_tl, v_tl) = map(lambda a: torch.roll(a, shifts=(-self.expand_size[0], -self.expand_size[1]), dims=(2, 3)), (k, v)) (k_tr, v_tr) = map(lambda a: torch.roll(a, shifts=(-self.expand_size[0], self.expand_size[1]), dims=(2, 3)), (k, v)) (k_bl, v_bl) = map(lambda a: torch.roll(a, shifts=(self.expand_size[0], -self.expand_size[1]), dims=(2, 3)), (k, v)) (k_br, v_br) = map(lambda a: torch.roll(a, shifts=(self.expand_size[0], self.expand_size[1]), dims=(2, 3)), (k, v)) (k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map( lambda a: window_partition(a, self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head), (k_tl, k_tr, k_bl, k_br)) (v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map( lambda a: window_partition(a, self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head), (v_tl, v_tr, v_bl, v_br)) rool_k = torch.cat((k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows), 4).contiguous() rool_v = torch.cat((v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows), 4).contiguous() # [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] # mask out tokens in current window rool_k = rool_k[:, :, :, :, self.valid_ind_rolled] rool_v = rool_v[:, :, :, :, self.valid_ind_rolled] roll_N = rool_k.shape[4] rool_k = rool_k.view(b, n_wh*n_ww, self.n_head, t, roll_N, c // self.n_head) rool_v = rool_v.view(b, n_wh*n_ww, self.n_head, t, roll_N, c // self.n_head) win_k = torch.cat((win_k, rool_k), dim=4) win_v = torch.cat((win_v, rool_v), dim=4) else: win_k = win_k win_v = win_v # pool_k and pool_v if self.pooling_token: pool_x = self.pool_layer(x.view(b*t, new_h, new_w, c).permute(0,3,1,2)) _, _, p_h, p_w = pool_x.shape pool_x = pool_x.permute(0,2,3,1).view(b, t, p_h, p_w, c) # pool_k pool_k = self.key(pool_x).unsqueeze(1).repeat(1, n_wh*n_ww, 1, 1, 1, 1) # [b, n_wh*n_ww, t, p_h, p_w, c] pool_k = pool_k.view(b, n_wh*n_ww, t, p_h, p_w, self.n_head, c_head).permute(0,1,5,2,3,4,6) pool_k = pool_k.contiguous().view(b, n_wh*n_ww, self.n_head, t, p_h*p_w, c_head) win_k = torch.cat((win_k, pool_k), dim=4) # pool_v pool_v = self.value(pool_x).unsqueeze(1).repeat(1, n_wh*n_ww, 1, 1, 1, 1) # [b, n_wh*n_ww, t, p_h, p_w, c] pool_v = pool_v.view(b, n_wh*n_ww, t, p_h, p_w, self.n_head, c_head).permute(0,1,5,2,3,4,6) pool_v = pool_v.contiguous().view(b, n_wh*n_ww, self.n_head, t, p_h*p_w, c_head) win_v = torch.cat((win_v, pool_v), dim=4) # [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] out = torch.zeros_like(win_q) l_t = mask.size(1) mask = self.max_pool(mask.view(b * l_t, new_h, new_w)) mask = mask.view(b, l_t, n_wh*n_ww) mask = torch.sum(mask, dim=1) # [b, n_wh*n_ww] for i in range(win_q.shape[0]): ### For masked windows mask_ind_i = mask[i].nonzero(as_tuple=False).view(-1) # mask out quary in current window # [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] mask_n = len(mask_ind_i) if mask_n > 0: win_q_t = win_q[i, mask_ind_i].view(mask_n, self.n_head, t*w_h*w_w, c_head) win_k_t = win_k[i, mask_ind_i] win_v_t = win_v[i, mask_ind_i] # mask out key and value if T_ind is not None: # key [n_wh*n_ww, n_head, t, w_h*w_w, c_head] win_k_t = win_k_t[:, :, T_ind.view(-1)].view(mask_n, self.n_head, -1, c_head) # value win_v_t = win_v_t[:, :, T_ind.view(-1)].view(mask_n, self.n_head, -1, c_head) else: win_k_t = win_k_t.view(n_wh*n_ww, self.n_head, t*w_h*w_w, c_head) win_v_t = win_v_t.view(n_wh*n_ww, self.n_head, t*w_h*w_w, c_head) att_t = (win_q_t @ win_k_t.transpose(-2, -1)) * (1.0 / math.sqrt(win_q_t.size(-1))) att_t = F.softmax(att_t, dim=-1) att_t = self.attn_drop(att_t) y_t = att_t @ win_v_t out[i, mask_ind_i] = y_t.view(-1, self.n_head, t, w_h*w_w, c_head) ### For unmasked windows unmask_ind_i = (mask[i] == 0).nonzero(as_tuple=False).view(-1) # mask out quary in current window # [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] win_q_s = win_q[i, unmask_ind_i] win_k_s = win_k[i, unmask_ind_i, :, :, :w_h*w_w] win_v_s = win_v[i, unmask_ind_i, :, :, :w_h*w_w] att_s = (win_q_s @ win_k_s.transpose(-2, -1)) * (1.0 / math.sqrt(win_q_s.size(-1))) att_s = F.softmax(att_s, dim=-1) att_s = self.attn_drop(att_s) y_s = att_s @ win_v_s out[i, unmask_ind_i] = y_s # re-assemble all head outputs side by side out = out.view(b, n_wh, n_ww, self.n_head, t, w_h, w_w, c_head) out = out.permute(0, 4, 1, 5, 2, 6, 3, 7).contiguous().view(b, t, new_h, new_w, c) if pad_r > 0 or pad_b > 0: out = out[:, :, :h, :w, :] # output projection out = self.proj_drop(self.proj(out)) return out class TemporalSparseTransformer(nn.Module): def __init__(self, dim, n_head, window_size, pool_size, norm_layer=nn.LayerNorm, t2t_params=None): super().__init__() self.window_size = window_size self.attention = SparseWindowAttention(dim, n_head, window_size, pool_size) self.norm1 = norm_layer(dim) self.norm2 = norm_layer(dim) self.mlp = FusionFeedForward(dim, t2t_params=t2t_params) def forward(self, x, fold_x_size, mask=None, T_ind=None): """ Args: x: image tokens, shape [B T H W C] fold_x_size: fold feature size, shape [60 108] mask: mask tokens, shape [B T H W 1] Returns: out_tokens: shape [B T H W C] """ B, T, H, W, C = x.shape # 20 36 shortcut = x x = self.norm1(x) att_x = self.attention(x, mask, T_ind) # FFN x = shortcut + att_x y = self.norm2(x) x = x + self.mlp(y.view(B, T * H * W, C), fold_x_size).view(B, T, H, W, C) return x class TemporalSparseTransformerBlock(nn.Module): def __init__(self, dim, n_head, window_size, pool_size, depths, t2t_params=None): super().__init__() blocks = [] for i in range(depths): blocks.append( TemporalSparseTransformer(dim, n_head, window_size, pool_size, t2t_params=t2t_params) ) self.transformer = nn.Sequential(*blocks) self.depths = depths def forward(self, x, fold_x_size, l_mask=None, t_dilation=2): """ Args: x: image tokens, shape [B T H W C] fold_x_size: fold feature size, shape [60 108] l_mask: local mask tokens, shape [B T H W 1] Returns: out_tokens: shape [B T H W C] """ assert self.depths % t_dilation == 0, 'wrong t_dilation input.' T = x.size(1) T_ind = [torch.arange(i, T, t_dilation) for i in range(t_dilation)] * (self.depths // t_dilation) for i in range(0, self.depths): x = self.transformer[i](x, fold_x_size, l_mask, T_ind[i]) return x