import torch import torch.nn as nn import torch.nn.functional as F import torchvision from model.modules.deformconv import ModulatedDeformConv2d from .misc import constant_init class SecondOrderDeformableAlignment(ModulatedDeformConv2d): """Second-order deformable alignment module.""" def __init__(self, *args, **kwargs): self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 5) super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs) self.conv_offset = nn.Sequential( nn.Conv2d(3 * self.out_channels, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1), ) self.init_offset() def init_offset(self): constant_init(self.conv_offset[-1], val=0, bias=0) def forward(self, x, extra_feat): out = self.conv_offset(extra_feat) o1, o2, mask = torch.chunk(out, 3, dim=1) # offset offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) offset_1, offset_2 = torch.chunk(offset, 2, dim=1) offset = torch.cat([offset_1, offset_2], dim=1) # mask mask = torch.sigmoid(mask) return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, self.dilation, mask) class BidirectionalPropagation(nn.Module): def __init__(self, channel): super(BidirectionalPropagation, self).__init__() modules = ['backward_', 'forward_'] self.deform_align = nn.ModuleDict() self.backbone = nn.ModuleDict() self.channel = channel for i, module in enumerate(modules): self.deform_align[module] = SecondOrderDeformableAlignment( 2 * channel, channel, 3, padding=1, deform_groups=16) self.backbone[module] = nn.Sequential( nn.Conv2d((2 + i) * channel, channel, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(channel, channel, 3, 1, 1), ) self.fusion = nn.Conv2d(2 * channel, channel, 1, 1, 0) def forward(self, x): """ x shape : [b, t, c, h, w] return [b, t, c, h, w] """ b, t, c, h, w = x.shape feats = {} feats['spatial'] = [x[:, i, :, :, :] for i in range(0, t)] for module_name in ['backward_', 'forward_']: feats[module_name] = [] frame_idx = range(0, t) mapping_idx = list(range(0, len(feats['spatial']))) mapping_idx += mapping_idx[::-1] if 'backward' in module_name: frame_idx = frame_idx[::-1] feat_prop = x.new_zeros(b, self.channel, h, w) for i, idx in enumerate(frame_idx): feat_current = feats['spatial'][mapping_idx[idx]] if i > 0: cond_n1 = feat_prop # initialize second-order features feat_n2 = torch.zeros_like(feat_prop) cond_n2 = torch.zeros_like(cond_n1) if i > 1: # second-order features feat_n2 = feats[module_name][-2] cond_n2 = feat_n2 cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1) # condition information, cond(flow warped 1st/2nd feature) feat_prop = torch.cat([feat_prop, feat_n2], dim=1) # two order feat_prop -1 & -2 feat_prop = self.deform_align[module_name](feat_prop, cond) # fuse current features feat = [feat_current] + \ [feats[k][idx] for k in feats if k not in ['spatial', module_name]] \ + [feat_prop] feat = torch.cat(feat, dim=1) # embed current features feat_prop = feat_prop + self.backbone[module_name](feat) feats[module_name].append(feat_prop) # end for if 'backward' in module_name: feats[module_name] = feats[module_name][::-1] outputs = [] for i in range(0, t): align_feats = [feats[k].pop(0) for k in feats if k != 'spatial'] align_feats = torch.cat(align_feats, dim=1) outputs.append(self.fusion(align_feats)) return torch.stack(outputs, dim=1) + x class deconv(nn.Module): def __init__(self, input_channel, output_channel, kernel_size=3, padding=0): super().__init__() self.conv = nn.Conv2d(input_channel, output_channel, kernel_size=kernel_size, stride=1, padding=padding) def forward(self, x): x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) return self.conv(x) class P3DBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, use_residual=0, bias=True): super().__init__() self.conv1 = nn.Sequential( nn.Conv3d(in_channels, out_channels, kernel_size=(1, kernel_size, kernel_size), stride=(1, stride, stride), padding=(0, padding, padding), bias=bias), nn.LeakyReLU(0.2, inplace=True) ) self.conv2 = nn.Sequential( nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(2, 0, 0), dilation=(2, 1, 1), bias=bias) ) self.use_residual = use_residual def forward(self, feats): feat1 = self.conv1(feats) feat2 = self.conv2(feat1) if self.use_residual: output = feats + feat2 else: output = feat2 return output class EdgeDetection(nn.Module): def __init__(self, in_ch=2, out_ch=1, mid_ch=16): super().__init__() self.projection = nn.Sequential( nn.Conv2d(in_ch, mid_ch, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True) ) self.mid_layer_1 = nn.Sequential( nn.Conv2d(mid_ch, mid_ch, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True) ) self.mid_layer_2 = nn.Sequential( nn.Conv2d(mid_ch, mid_ch, 3, 1, 1) ) self.l_relu = nn.LeakyReLU(0.01, inplace=True) self.out_layer = nn.Conv2d(mid_ch, out_ch, 1, 1, 0) def forward(self, flow): flow = self.projection(flow) edge = self.mid_layer_1(flow) edge = self.mid_layer_2(edge) edge = self.l_relu(flow + edge) edge = self.out_layer(edge) edge = torch.sigmoid(edge) return edge class RecurrentFlowCompleteNet(nn.Module): def __init__(self, model_path=None): super().__init__() self.downsample = nn.Sequential( nn.Conv3d(3, 32, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 2, 2), padding_mode='replicate'), nn.LeakyReLU(0.2, inplace=True) ) self.encoder1 = nn.Sequential( P3DBlock(32, 32, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), P3DBlock(32, 64, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True) ) # 4x self.encoder2 = nn.Sequential( P3DBlock(64, 64, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), P3DBlock(64, 128, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True) ) # 8x self.mid_dilation = nn.Sequential( nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 3, 3), dilation=(1, 3, 3)), # p = d*(k-1)/2 nn.LeakyReLU(0.2, inplace=True), nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 2, 2), dilation=(1, 2, 2)), nn.LeakyReLU(0.2, inplace=True), nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 1, 1), dilation=(1, 1, 1)), nn.LeakyReLU(0.2, inplace=True) ) # feature propagation module self.feat_prop_module = BidirectionalPropagation(128) self.decoder2 = nn.Sequential( nn.Conv2d(128, 128, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), deconv(128, 64, 3, 1), nn.LeakyReLU(0.2, inplace=True) ) # 4x self.decoder1 = nn.Sequential( nn.Conv2d(64, 64, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), deconv(64, 32, 3, 1), nn.LeakyReLU(0.2, inplace=True) ) # 2x self.upsample = nn.Sequential( nn.Conv2d(32, 32, 3, padding=1), nn.LeakyReLU(0.2, inplace=True), deconv(32, 2, 3, 1) ) # edge loss self.edgeDetector = EdgeDetection(in_ch=2, out_ch=1, mid_ch=16) # Need to initial the weights of MSDeformAttn specifically for m in self.modules(): if isinstance(m, SecondOrderDeformableAlignment): m.init_offset() if model_path is not None: print('Pretrained flow completion model has loaded...') ckpt = torch.load(model_path, map_location='cpu') self.load_state_dict(ckpt, strict=True) def forward(self, masked_flows, masks): # masked_flows: b t-1 2 h w # masks: b t-1 2 h w b, t, _, h, w = masked_flows.size() masked_flows = masked_flows.permute(0,2,1,3,4) masks = masks.permute(0,2,1,3,4) inputs = torch.cat((masked_flows, masks), dim=1) x = self.downsample(inputs) feat_e1 = self.encoder1(x) feat_e2 = self.encoder2(feat_e1) # b c t h w feat_mid = self.mid_dilation(feat_e2) # b c t h w feat_mid = feat_mid.permute(0,2,1,3,4) # b t c h w feat_prop = self.feat_prop_module(feat_mid) feat_prop = feat_prop.view(-1, 128, h//8, w//8) # b*t c h w _, c, _, h_f, w_f = feat_e1.shape feat_e1 = feat_e1.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) # b*t c h w feat_d2 = self.decoder2(feat_prop) + feat_e1 _, c, _, h_f, w_f = x.shape x = x.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) # b*t c h w feat_d1 = self.decoder1(feat_d2) flow = self.upsample(feat_d1) if self.training: edge = self.edgeDetector(flow) edge = edge.view(b, t, 1, h, w) else: edge = None flow = flow.view(b, t, 2, h, w) return flow, edge def forward_bidirect_flow(self, masked_flows_bi, masks): """ Args: masked_flows_bi: [masked_flows_f, masked_flows_b] | (b t-1 2 h w), (b t-1 2 h w) masks: b t 1 h w """ masks_forward = masks[:, :-1, ...].contiguous() masks_backward = masks[:, 1:, ...].contiguous() # mask flow masked_flows_forward = masked_flows_bi[0] * (1-masks_forward) masked_flows_backward = masked_flows_bi[1] * (1-masks_backward) # -- completion -- # forward pred_flows_forward, pred_edges_forward = self.forward(masked_flows_forward, masks_forward) # backward masked_flows_backward = torch.flip(masked_flows_backward, dims=[1]) masks_backward = torch.flip(masks_backward, dims=[1]) pred_flows_backward, pred_edges_backward = self.forward(masked_flows_backward, masks_backward) pred_flows_backward = torch.flip(pred_flows_backward, dims=[1]) if self.training: pred_edges_backward = torch.flip(pred_edges_backward, dims=[1]) return [pred_flows_forward, pred_flows_backward], [pred_edges_forward, pred_edges_backward] def combine_flow(self, masked_flows_bi, pred_flows_bi, masks): masks_forward = masks[:, :-1, ...].contiguous() masks_backward = masks[:, 1:, ...].contiguous() pred_flows_forward = pred_flows_bi[0] * masks_forward + masked_flows_bi[0] * (1-masks_forward) pred_flows_backward = pred_flows_bi[1] * masks_backward + masked_flows_bi[1] * (1-masks_backward) return pred_flows_forward, pred_flows_backward