File size: 4,128 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from tracker.model.channel_attn import CAResBlock


def interpolate_groups(g: torch.Tensor, ratio: float, mode: str,
                       align_corners: bool) -> torch.Tensor:
    batch_size, num_objects = g.shape[:2]
    g = F.interpolate(g.flatten(start_dim=0, end_dim=1),
                      scale_factor=ratio,
                      mode=mode,
                      align_corners=align_corners)
    g = g.view(batch_size, num_objects, *g.shape[1:])
    return g


def upsample_groups(g: torch.Tensor,
                    ratio: float = 2,
                    mode: str = 'bilinear',
                    align_corners: bool = False) -> torch.Tensor:
    return interpolate_groups(g, ratio, mode, align_corners)


def downsample_groups(g: torch.Tensor,
                      ratio: float = 1 / 2,
                      mode: str = 'area',
                      align_corners: bool = None) -> torch.Tensor:
    return interpolate_groups(g, ratio, mode, align_corners)


class GConv2d(nn.Conv2d):
    def forward(self, g: torch.Tensor) -> torch.Tensor:
        batch_size, num_objects = g.shape[:2]
        g = super().forward(g.flatten(start_dim=0, end_dim=1))
        return g.view(batch_size, num_objects, *g.shape[1:])


class GroupResBlock(nn.Module):
    def __init__(self, in_dim: int, out_dim: int):
        super().__init__()

        if in_dim == out_dim:
            self.downsample = nn.Identity()
        else:
            self.downsample = GConv2d(in_dim, out_dim, kernel_size=1)

        self.conv1 = GConv2d(in_dim, out_dim, kernel_size=3, padding=1)
        self.conv2 = GConv2d(out_dim, out_dim, kernel_size=3, padding=1)

    def forward(self, g: torch.Tensor) -> torch.Tensor:
        out_g = self.conv1(F.relu(g))
        out_g = self.conv2(F.relu(out_g))

        g = self.downsample(g)

        return out_g + g


class MainToGroupDistributor(nn.Module):
    def __init__(self,
                 x_transform: Optional[nn.Module] = None,
                 g_transform: Optional[nn.Module] = None,
                 method: str = 'cat',
                 reverse_order: bool = False):
        super().__init__()

        self.x_transform = x_transform
        self.g_transform = g_transform
        self.method = method
        self.reverse_order = reverse_order

    def forward(self, x: torch.Tensor, g: torch.Tensor, skip_expand: bool = False) -> torch.Tensor:
        num_objects = g.shape[1]

        if self.x_transform is not None:
            x = self.x_transform(x)

        if self.g_transform is not None:
            g = self.g_transform(g)

        if not skip_expand:
            x = x.unsqueeze(1).expand(-1, num_objects, -1, -1, -1)
        if self.method == 'cat':
            if self.reverse_order:
                g = torch.cat([g, x], 2)
            else:
                g = torch.cat([x, g], 2)
        elif self.method == 'add':
            g = x + g
        elif self.method == 'mulcat':
            g = torch.cat([x * g, g], dim=2)
        elif self.method == 'muladd':
            g = x * g + g
        else:
            raise NotImplementedError

        return g


class GroupFeatureFusionBlock(nn.Module):
    def __init__(self, x_in_dim: int, g_in_dim: int, out_dim: int):
        super().__init__()

        x_transform = nn.Conv2d(x_in_dim, out_dim, kernel_size=1)
        g_transform = GConv2d(g_in_dim, out_dim, kernel_size=1)

        self.distributor = MainToGroupDistributor(x_transform=x_transform,
                                                  g_transform=g_transform,
                                                  method='add')
        self.block1 = CAResBlock(out_dim, out_dim)
        self.block2 = CAResBlock(out_dim, out_dim)

    def forward(self, x: torch.Tensor, g: torch.Tensor) -> torch.Tensor:
        batch_size, num_objects = g.shape[:2]

        g = self.distributor(x, g)

        g = g.flatten(start_dim=0, end_dim=1)

        g = self.block1(g)
        g = self.block2(g)

        g = g.view(batch_size, num_objects, *g.shape[1:])

        return g