File size: 11,554 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from typing import List, Dict
import logging
from omegaconf import DictConfig
import torch
import torch.nn as nn

from tracker.model.modules import *
from tracker.model.big_modules import *
from tracker.model.aux_modules import AuxComputer
from tracker.model.utils.memory_utils import *
from tracker.model.transformer.object_transformer import QueryTransformer
from tracker.model.transformer.object_summarizer import ObjectSummarizer
from tracker.utils.tensor_utils import aggregate

log = logging.getLogger()


class CUTIE(nn.Module):
    def __init__(self, cfg: DictConfig, *, single_object=False):
        super().__init__()
        model_cfg = cfg.model
        self.ms_dims = model_cfg.pixel_encoder.ms_dims
        self.key_dim = model_cfg.key_dim
        self.value_dim = model_cfg.value_dim
        self.sensory_dim = model_cfg.sensory_dim
        self.pixel_dim = model_cfg.pixel_dim
        self.embed_dim = model_cfg.embed_dim
        self.single_object = single_object

        log.info(f'Single object: {self.single_object}')

        self.pixel_encoder = PixelEncoder(model_cfg)
        self.pix_feat_proj = nn.Conv2d(self.ms_dims[0], self.pixel_dim, kernel_size=1)
        self.key_proj = KeyProjection(model_cfg)
        self.mask_encoder = MaskEncoder(model_cfg, single_object=single_object)
        self.mask_decoder = MaskDecoder(model_cfg)
        self.pixel_fuser = PixelFeatureFuser(model_cfg, single_object=single_object)
        self.object_transformer = QueryTransformer(model_cfg)
        self.object_summarizer = ObjectSummarizer(model_cfg)
        self.aux_computer = AuxComputer(cfg)

        self.register_buffer("pixel_mean", torch.Tensor(model_cfg.pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(model_cfg.pixel_std).view(-1, 1, 1), False)

    def _get_others(self, masks: torch.Tensor) -> torch.Tensor:
        # for each object, return the sum of masks of all other objects
        if self.single_object:
            return None

        num_objects = masks.shape[1]
        if num_objects >= 1:
            others = (masks.sum(dim=1, keepdim=True) - masks).clamp(0, 1)
        else:
            others = torch.zeros_like(masks)
        return others

    def encode_image(self, image: torch.Tensor) -> (Iterable[torch.Tensor], torch.Tensor):
        image = (image - self.pixel_mean) / self.pixel_std
        ms_image_feat = self.pixel_encoder(image)
        return ms_image_feat, self.pix_feat_proj(ms_image_feat[0])

    def encode_mask(
            self,
            image: torch.Tensor,
            ms_features: List[torch.Tensor],
            sensory: torch.Tensor,
            masks: torch.Tensor,
            *,
            deep_update: bool = True,
            chunk_size: int = -1,
            need_weights: bool = False) -> (torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
        image = (image - self.pixel_mean) / self.pixel_std
        others = self._get_others(masks)
        mask_value, new_sensory = self.mask_encoder(image,
                                                    ms_features,
                                                    sensory,
                                                    masks,
                                                    others,
                                                    deep_update=deep_update,
                                                    chunk_size=chunk_size)
        object_summaries, object_logits = self.object_summarizer(masks, mask_value, need_weights)
        return mask_value, new_sensory, object_summaries, object_logits

    def transform_key(self,
                      final_pix_feat: torch.Tensor,
                      *,
                      need_sk: bool = True,
                      need_ek: bool = True) -> (torch.Tensor, torch.Tensor, torch.Tensor):
        key, shrinkage, selection = self.key_proj(final_pix_feat, need_s=need_sk, need_e=need_ek)
        return key, shrinkage, selection

    # Used in training only.
    # This step is replaced by MemoryManager in test time
    def read_memory(self, query_key: torch.Tensor, query_selection: torch.Tensor,
                    memory_key: torch.Tensor, memory_shrinkage: torch.Tensor,
                    msk_value: torch.Tensor, obj_memory: torch.Tensor, pix_feat: torch.Tensor,
                    sensory: torch.Tensor, last_mask: torch.Tensor,
                    selector: torch.Tensor) -> (torch.Tensor, Dict[str, torch.Tensor]):
        """
        query_key       : B * CK * H * W
        query_selection : B * CK * H * W
        memory_key      : B * CK * T * H * W
        memory_shrinkage: B * 1  * T * H * W
        msk_value       : B * num_objects * CV * T * H * W
        obj_memory      : B * num_objects * T * num_summaries * C
        pixel_feature   : B * C * H * W
        """
        batch_size, num_objects = msk_value.shape[:2]

        # read using visual attention
        with torch.cuda.amp.autocast(enabled=False):
            affinity = get_affinity(memory_key.float(), memory_shrinkage.float(), query_key.float(),
                                    query_selection.float())

            msk_value = msk_value.flatten(start_dim=1, end_dim=2).float()

            # B * (num_objects*CV) * H * W
            pixel_readout = readout(affinity, msk_value)
            pixel_readout = pixel_readout.view(batch_size, num_objects, self.value_dim,
                                               *pixel_readout.shape[-2:])
        pixel_readout = self.pixel_fusion(pix_feat, pixel_readout, sensory, last_mask)

        # read from query transformer
        mem_readout, aux_features = self.readout_query(pixel_readout, obj_memory, selector=selector)

        aux_output = {
            'sensory': sensory,
            'q_logits': aux_features['logits'] if aux_features else None,
            'attn_mask': aux_features['attn_mask'] if aux_features else None,
        }

        return mem_readout, aux_output

    def pixel_fusion(self,
                     pix_feat: torch.Tensor,
                     pixel: torch.Tensor,
                     sensory: torch.Tensor,
                     last_mask: torch.Tensor,
                     *,
                     chunk_size: int = -1) -> torch.Tensor:
        last_mask = F.interpolate(last_mask, size=sensory.shape[-2:], mode='area')
        last_others = self._get_others(last_mask)
        fused = self.pixel_fuser(pix_feat,
                                 pixel,
                                 sensory,
                                 last_mask,
                                 last_others,
                                 chunk_size=chunk_size)
        return fused

    def readout_query(self,
                      pixel_readout,
                      obj_memory,
                      *,
                      selector=None,
                      need_weights=False) -> (torch.Tensor, Dict[str, torch.Tensor]):
        return self.object_transformer(pixel_readout,
                                       obj_memory,
                                       selector=selector,
                                       need_weights=need_weights)

    def segment(self,
                ms_image_feat: List[torch.Tensor],
                memory_readout: torch.Tensor,
                sensory: torch.Tensor,
                *,
                selector: bool = None,
                chunk_size: int = -1,
                update_sensory: bool = True) -> (torch.Tensor, torch.Tensor, torch.Tensor):
        """
        multi_scale_features is from the key encoder for skip-connection
        memory_readout is from working/long-term memory
        sensory is the sensory memory
        last_mask is the mask from the last frame, supplementing sensory memory
        selector is 1 if an object exists, and 0 otherwise. We use it to filter padded objects
            during training.
        """
        sensory, logits = self.mask_decoder(ms_image_feat,
                                            memory_readout,
                                            sensory,
                                            chunk_size=chunk_size,
                                            update_sensory=update_sensory)

        prob = torch.sigmoid(logits)
        if selector is not None:
            prob = prob * selector

        # Softmax over all objects[]
        logits = aggregate(prob, dim=1)
        logits = F.interpolate(logits, scale_factor=4, mode='bilinear', align_corners=False)
        prob = F.softmax(logits, dim=1)

        return sensory, logits, prob

    def compute_aux(self, pix_feat: torch.Tensor, aux_inputs: Dict[str, torch.Tensor],
                    selector: torch.Tensor) -> Dict[str, torch.Tensor]:
        return self.aux_computer(pix_feat, aux_inputs, selector)

    def forward(self, *args, **kwargs):
        raise NotImplementedError

    def load_weights(self, src_dict, init_as_zero_if_needed=False) -> None:
        if not self.single_object:
            # Map single-object weight to multi-object weight (4->5 out channels in conv1)
            for k in list(src_dict.keys()):
                if k == 'mask_encoder.conv1.weight':
                    if src_dict[k].shape[1] == 4:
                        log.info(f'Converting {k} from single object to multiple objects.')
                        pads = torch.zeros((64, 1, 7, 7), device=src_dict[k].device)
                        if not init_as_zero_if_needed:
                            nn.init.orthogonal_(pads)
                            log.info(f'Randomly initialized padding for {k}.')
                        else:
                            log.info(f'Zero-initialized padding for {k}.')
                        src_dict[k] = torch.cat([src_dict[k], pads], 1)
                elif k == 'pixel_fuser.sensory_compress.weight':
                    if src_dict[k].shape[1] == self.sensory_dim + 1:
                        log.info(f'Converting {k} from single object to multiple objects.')
                        pads = torch.zeros((self.value_dim, 1, 1, 1), device=src_dict[k].device)
                        if not init_as_zero_if_needed:
                            nn.init.orthogonal_(pads)
                            log.info(f'Randomly initialized padding for {k}.')
                        else:
                            log.info(f'Zero-initialized padding for {k}.')
                        src_dict[k] = torch.cat([src_dict[k], pads], 1)
        elif self.single_object:
            """
            If the model is multiple-object and we are training in single-object, 
            we strip the last channel of conv1.
            This is not supposed to happen in standard training except when users are trying to
            finetune a trained model with single object datasets.
            """
            if src_dict['mask_encoder.conv1.weight'].shape[1] == 5:
                log.warning(f'Converting {k} from multiple objects to single object.'
                            'This is not supposed to happen in standard training.')
                src_dict[k] = src_dict[k][:, :-1]

        for k in src_dict:
            if k not in self.state_dict():
                log.info(f'Key {k} found in src_dict but not in self.state_dict()!!!')
        for k in self.state_dict():
            if k not in src_dict:
                log.info(f'Key {k} found in self.state_dict() but not in src_dict!!!')

        self.load_state_dict(src_dict, strict=False)

    @property
    def device(self) -> torch.device:
        return self.pixel_mean.device