File size: 11,117 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
big_modules.py - This file stores higher-level network blocks.

x - usually denotes features that are shared between objects.
g - usually denotes features that are not shared between objects 
    with an extra "num_objects" dimension (batch_size * num_objects * num_channels * H * W).

The trailing number of a variable usually denotes the stride
"""

from omegaconf import DictConfig
import torch
import torch.nn as nn
import torch.nn.functional as F

from tracker.model.group_modules import *
from tracker.model.utils import resnet
from tracker.model.modules import *


class PixelEncoder(nn.Module):
    def __init__(self, model_cfg: DictConfig):
        super().__init__()

        self.is_resnet = 'resnet' in model_cfg.pixel_encoder.type
        if self.is_resnet:
            if model_cfg.pixel_encoder.type == 'resnet18':
                network = resnet.resnet18(pretrained=True)
            elif model_cfg.pixel_encoder.type == 'resnet50':
                network = resnet.resnet50(pretrained=True)
            else:
                raise NotImplementedError
            self.conv1 = network.conv1
            self.bn1 = network.bn1
            self.relu = network.relu
            self.maxpool = network.maxpool

            self.res2 = network.layer1
            self.layer2 = network.layer2
            self.layer3 = network.layer3
        else:
            raise NotImplementedError

    def forward(self, x: torch.Tensor) -> (torch.Tensor, torch.Tensor, torch.Tensor):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        f4 = self.res2(x)
        f8 = self.layer2(f4)
        f16 = self.layer3(f8)

        return f16, f8, f4

    # override the default train() to freeze BN statistics
    def train(self, mode=True):
        self.training = False
        for module in self.children():
            module.train(False)
        return self


class KeyProjection(nn.Module):
    def __init__(self, model_cfg: DictConfig):
        super().__init__()
        in_dim = model_cfg.pixel_encoder.ms_dims[0]
        mid_dim = model_cfg.pixel_dim
        key_dim = model_cfg.key_dim

        self.pix_feat_proj = nn.Conv2d(in_dim, mid_dim, kernel_size=1)
        self.key_proj = nn.Conv2d(mid_dim, key_dim, kernel_size=3, padding=1)
        # shrinkage
        self.d_proj = nn.Conv2d(mid_dim, 1, kernel_size=3, padding=1)
        # selection
        self.e_proj = nn.Conv2d(mid_dim, key_dim, kernel_size=3, padding=1)

        nn.init.orthogonal_(self.key_proj.weight.data)
        nn.init.zeros_(self.key_proj.bias.data)

    def forward(self, x: torch.Tensor, *, need_s: bool,
                need_e: bool) -> (torch.Tensor, torch.Tensor, torch.Tensor):
        x = self.pix_feat_proj(x)
        shrinkage = self.d_proj(x)**2 + 1 if (need_s) else None
        selection = torch.sigmoid(self.e_proj(x)) if (need_e) else None

        return self.key_proj(x), shrinkage, selection


class MaskEncoder(nn.Module):
    def __init__(self, model_cfg: DictConfig, single_object=False):
        super().__init__()
        pixel_dim = model_cfg.pixel_dim
        value_dim = model_cfg.value_dim
        sensory_dim = model_cfg.sensory_dim
        final_dim = model_cfg.mask_encoder.final_dim

        self.single_object = single_object
        extra_dim = 1 if single_object else 2

        if model_cfg.mask_encoder.type == 'resnet18':
            network = resnet.resnet18(pretrained=True, extra_dim=extra_dim)
        elif model_cfg.mask_encoder.type == 'resnet50':
            network = resnet.resnet50(pretrained=True, extra_dim=extra_dim)
        else:
            raise NotImplementedError
        self.conv1 = network.conv1
        self.bn1 = network.bn1
        self.relu = network.relu
        self.maxpool = network.maxpool

        self.layer1 = network.layer1
        self.layer2 = network.layer2
        self.layer3 = network.layer3

        self.distributor = MainToGroupDistributor()
        self.fuser = GroupFeatureFusionBlock(pixel_dim, final_dim, value_dim)

        self.sensory_update = SensoryDeepUpdater(value_dim, sensory_dim)

    def forward(self,
                image: torch.Tensor,
                pix_feat: torch.Tensor,
                sensory: torch.Tensor,
                masks: torch.Tensor,
                others: torch.Tensor,
                *,
                deep_update: bool = True,
                chunk_size: int = -1) -> (torch.Tensor, torch.Tensor):
        # ms_features are from the key encoder
        # we only use the first one (lowest resolution), following XMem
        if self.single_object:
            g = masks.unsqueeze(2)
        else:
            g = torch.stack([masks, others], dim=2)

        g = self.distributor(image, g)

        batch_size, num_objects = g.shape[:2]
        if chunk_size < 1 or chunk_size >= num_objects:
            chunk_size = num_objects
            fast_path = True
            new_sensory = sensory
        else:
            if deep_update:
                new_sensory = torch.empty_like(sensory)
            else:
                new_sensory = sensory
            fast_path = False

        # chunk-by-chunk inference
        all_g = []
        for i in range(0, num_objects, chunk_size):
            if fast_path:
                g_chunk = g
            else:
                g_chunk = g[:, i:i + chunk_size]
            actual_chunk_size = g_chunk.shape[1]
            g_chunk = g_chunk.flatten(start_dim=0, end_dim=1)

            g_chunk = self.conv1(g_chunk)
            g_chunk = self.bn1(g_chunk)  # 1/2, 64
            g_chunk = self.maxpool(g_chunk)  # 1/4, 64
            g_chunk = self.relu(g_chunk)

            g_chunk = self.layer1(g_chunk)  # 1/4
            g_chunk = self.layer2(g_chunk)  # 1/8
            g_chunk = self.layer3(g_chunk)  # 1/16

            g_chunk = g_chunk.view(batch_size, actual_chunk_size, *g_chunk.shape[1:])
            g_chunk = self.fuser(pix_feat, g_chunk)
            all_g.append(g_chunk)
            if deep_update:
                if fast_path:
                    new_sensory = self.sensory_update(g_chunk, sensory)
                else:
                    new_sensory[:, i:i + chunk_size] = self.sensory_update(
                        g_chunk, sensory[:, i:i + chunk_size])
        g = torch.cat(all_g, dim=1)

        return g, new_sensory

    # override the default train() to freeze BN statistics
    def train(self, mode=True):
        self.training = False
        for module in self.children():
            module.train(False)
        return self


class PixelFeatureFuser(nn.Module):
    def __init__(self, model_cfg: DictConfig, single_object=False):
        super().__init__()
        value_dim = model_cfg.value_dim
        sensory_dim = model_cfg.sensory_dim
        pixel_dim = model_cfg.pixel_dim
        embed_dim = model_cfg.embed_dim
        self.single_object = single_object

        self.fuser = GroupFeatureFusionBlock(pixel_dim, value_dim, embed_dim)
        if self.single_object:
            self.sensory_compress = GConv2d(sensory_dim + 1, value_dim, kernel_size=1)
        else:
            self.sensory_compress = GConv2d(sensory_dim + 2, value_dim, kernel_size=1)

    def forward(self,
                pix_feat: torch.Tensor,
                pixel_memory: torch.Tensor,
                sensory_memory: torch.Tensor,
                last_mask: torch.Tensor,
                last_others: torch.Tensor,
                *,
                chunk_size: int = -1) -> torch.Tensor:
        batch_size, num_objects = pixel_memory.shape[:2]

        if self.single_object:
            last_mask = last_mask.unsqueeze(2)
        else:
            last_mask = torch.stack([last_mask, last_others], dim=2)

        if chunk_size < 1:
            chunk_size = num_objects

        # chunk-by-chunk inference
        all_p16 = []
        for i in range(0, num_objects, chunk_size):
            sensory_readout = self.sensory_compress(
                torch.cat([sensory_memory[:, i:i + chunk_size], last_mask[:, i:i + chunk_size]], 2))
            p16 = pixel_memory[:, i:i + chunk_size] + sensory_readout
            p16 = self.fuser(pix_feat, p16)
            all_p16.append(p16)
        p16 = torch.cat(all_p16, dim=1)

        return p16


class MaskDecoder(nn.Module):
    def __init__(self, model_cfg: DictConfig):
        super().__init__()
        embed_dim = model_cfg.embed_dim
        sensory_dim = model_cfg.sensory_dim
        ms_image_dims = model_cfg.pixel_encoder.ms_dims
        up_dims = model_cfg.mask_decoder.up_dims

        assert embed_dim == up_dims[0]

        self.sensory_update = SensoryUpdater([up_dims[0], up_dims[1], up_dims[2] + 1], sensory_dim,
                                             sensory_dim)

        self.decoder_feat_proc = DecoderFeatureProcessor(ms_image_dims[1:], up_dims[:-1])
        self.up_16_8 = MaskUpsampleBlock(up_dims[0], up_dims[1])
        self.up_8_4 = MaskUpsampleBlock(up_dims[1], up_dims[2])

        self.pred = nn.Conv2d(up_dims[-1], 1, kernel_size=3, padding=1)

    def forward(self,
                ms_image_feat: Iterable[torch.Tensor],
                memory_readout: torch.Tensor,
                sensory: torch.Tensor,
                *,
                chunk_size: int = -1,
                update_sensory: bool = True) -> (torch.Tensor, torch.Tensor):

        batch_size, num_objects = memory_readout.shape[:2]
        f8, f4 = self.decoder_feat_proc(ms_image_feat[1:])
        if chunk_size < 1 or chunk_size >= num_objects:
            chunk_size = num_objects
            fast_path = True
            new_sensory = sensory
        else:
            if update_sensory:
                new_sensory = torch.empty_like(sensory)
            else:
                new_sensory = sensory
            fast_path = False

        # chunk-by-chunk inference
        all_logits = []
        for i in range(0, num_objects, chunk_size):
            if fast_path:
                p16 = memory_readout
            else:
                p16 = memory_readout[:, i:i + chunk_size]
            actual_chunk_size = p16.shape[1]

            p8 = self.up_16_8(p16, f8)
            p4 = self.up_8_4(p8, f4)
            with torch.cuda.amp.autocast(enabled=False):
                logits = self.pred(F.relu(p4.flatten(start_dim=0, end_dim=1).float()))

            if update_sensory:
                p4 = torch.cat(
                    [p4, logits.view(batch_size, actual_chunk_size, 1, *logits.shape[-2:])], 2)
                if fast_path:
                    new_sensory = self.sensory_update([p16, p8, p4], sensory)
                else:
                    new_sensory[:,
                                i:i + chunk_size] = self.sensory_update([p16, p8, p4],
                                                                        sensory[:,
                                                                                i:i + chunk_size])
            all_logits.append(logits)
        logits = torch.cat(all_logits, dim=0)
        logits = logits.view(batch_size, num_objects, *logits.shape[-2:])

        return new_sensory, logits