import os # install torch and tf os.system('pip install transformers SentencePiece') os.system('pip install torch') from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer import torch import gradio as gr # 下载模型 tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v1") model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v1") # 修改colab笔记本设置为gpu,推理更快 device = torch.device('cpu') model.to(device) print('Model Load done!') def preprocess(text): text = text.replace("\n", "\\n").replace("\t", "\\t") return text def postprocess(text): return text.replace("\\n", "\n").replace("\\t", "\t") def answer(text, sample=True, top_p=1, temperature=0.7): '''sample:是否抽样。生成任务,可以设置为True; top_p:0-1之间,生成的内容越多样 max_new_tokens=512 lost...''' text = preprocess(text) print('用户: '+text) encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=768, return_tensors="pt").to(device) if not sample: out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, num_beams=1, length_penalty=0.6) else: out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=3) out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True) print('小元: '+postprocess(out_text[0])) return postprocess(out_text[0]) def command_result(text): output = answer(text) return output input_component = gr.Textbox(label = "输入你要对话的文本", value = "你好!") output_component = gr.Textbox(label = "机器人回复") examples = [["你好!"], ["请自我介绍一下!"]] description = "这是一个使用ClueAI/ChatYuan-large-v1构建的中文文本对话聊天机器人" gr.Interface(command_result, inputs = input_component, outputs=output_component, examples=examples, title = "👨🏻‍🎤 中文对话聊天机器人 👨🏻‍🎤", description=description).launch()